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Particle energization in turbulence

• Nonlinear cascade of MHD Alfvén waves 
transitions to a cascade of kinetic Alfvén 
waves at the ion Larmor radius.

• Most dissipation begins at ion kinetic scales 
and includes (but is not limited to):
- Wave-particle interactions (Landau, transit-

time, cyclotron, …).
- Current sheets also reconnect at ion scales 

and may be responsible for dissipation. 

• Can we identify the energization mechanism?
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• Introduce the field particle correlation
- Langmuir wave damping
- Sod shock
- Turbulence: Driven gyrokinetic and hybrid kinetic

• Introduce PiD
- Langmuir wave damping
- Sod shock



Simulation codes
Gkeyll [Juno et al 2018]

Continuum Vlasov-Maxwell
Pegasus [Kunz et al 2014]

Hybrid particle-in-cell
AstroGK [Numata et al 2010]

Continuum gyrokinetics

Fully kinetic Eulerian ions 
and electrons

Kinetic Lagrangian ions and 
massless, isothermal fluid 
electrons

Gyrokinetic Eulerian ions 
and electrons
—ω<<Ωcs, k||<<k , & δf<<f0

Quasineutral Quasineutral

Non-relativistic Non-relativistic

Cyclotron waves and 
entire fast/whistler mode 
branch ordered out

Includes Landau collision 
operator

Collisionless ions, hyper-
resistivity added to electronsCollisionless

Non-relativistic

Background quantities not 
evolved

⊥

Up to 3x3v ions and electrons Up to 3x3v ions and 3x 
electrons

Up to 3x2v ions and 
electrons



Field Particle Correlations



Vlasov-Poisson [Howes, Klein, & Li (2017)]

8 G. G. Howes, K. G. Klein, and T. C. Li

by parts in velocity to yield the result

∂Ws

∂t
=

∫ L/2

−L/2
dx

∂φ

∂x

∫ ∞

−∞
dv qsvfs = −

∫ L/2

−L/2
dx jsE (3.6)

where the current density for species s is given by js =
∫

dv qsvfs.
Since the total current density j =

∑

s js, we may integrate (3.3) over space and
combine it with (3.6) summed over species to obtain an expression for the conservation
of energy in a 1D-1V electrostatic plasma,

∂

∂t

∫ L/2

−L/2
dx

(

E2

8π

)

+
∂

∂t

∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs = 0 (3.7)

Therefore, the conserved Vlasov-Poisson energy W for electrostatic fluctuations in a
collisionless, unmagnetized plasma is given by

W =

∫ L/2

−L/2
dx

E2

8π
+
∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.8)

We also define the electrostatic field energy electrostatic field energy

Wφ ≡
∫ L/2

−L/2
dx

E2

8π
, (3.9)

such that the total conserved Vlasov-Poisson energy for a single ion species plasma is
given by

W = Wφ +Wi +We. (3.10)

3.2. Energy Transfer via Collisionless Wave-Particle Interactions

To illuminate the secular transfer of energy between the electrostatic field and the parti-
cles via resonant wave-particle interactions, it is instructive to examine more closely the
different contributions to the change in the particle energy, Ws. As (3.7) mandates, in
the Vlasov-Poisson system, the energy gain by the particles must be equal to the energy
lost from the electrostatic field,

∑

s ∂Ws/∂t = −∂Wφ/∂t. We may express the rate of
energy exchange (gain or loss) for species s by

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2 ∂fs
∂t

(3.11)

To progress further, we decompose the distribution function into an equilibrium and
perturbed component,

fs(x, v, t) = fs0(v) + δfs(x, v, t), (3.12)

where the equilibrium distribution function fs0(v) is assumed to be uniform in space and
static in time. We also make the additional assumption that fs0(v) is an even function
of velocity so that the equilibrium has no bulk plasma flow (first moment), but it need
not be a Maxwellian.
We emphasize here that we have made no ordering assumptions on the magnitude

of δfs relative to fs0, so the nonlinear evolution of the distribution function described
by this form is not limited in any way. The term δfs contains the entire (nonlinear)
perturbation, not just the lowest order (linear) perturbation. Of course, the physical
limitation

fs(x, v, t) = fs0(v) + δfs(x, v, t) ! 0 (3.13)
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t

= −v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2

[

−v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws

∂t
= −

∫

dx
∂φ

∂x

∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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functions. This theoretical insight will be used to devise a novel analysis strategy using
correlated field and particle measurements to identify definitively the action of collision-
less wave-particle interactions in heliospheric plasmas using either spacecraft measure-
ments or nonlinear kinetic numerical simulations.
Here we review the properties of electrostatic fluctuations in a collisionless, unmag-

netized plasma that are relevant to the aim of identifying the secular energy transfer
via collisionless wave-particle interactions. For simplicity in the analytical calculations
presented here, we consider a strictly one-dimensional (1D-1V) kinetic system, but do
note that the physics of electrostatic fluctuations (∇ × E = 0) remains unchanged in
a realistic three-dimensional plasma. The dynamics of the electrostatic fluctuations in
a collisionless 1D-1V plasma is governed by the Vlasov-Poisson equations, where the
Vlasov equation determines the collisionless evolution of the distribution function for
each species s, fs(x, v, t), given by

∂fs
∂t

+ v
∂fs
∂x

−
qs
ms

∂φ

∂x

∂fs
∂v

= 0 (3.1)

and the Poisson equation yields the scalar electrostatic potential, φ(x, t),

∂2φ

∂x2
= −4π

∑

s

∫ +∞

−∞
dv qsfs. (3.2)

Physically, the second term of the Vlasov equation describes the ballistic behavior of
the particles in the collisionless plasma and the third term governs the response of the
particles to the electric field E = −∂φ/∂x. Here we denote these terms the ballistic term
and the wave-particle interaction term, respectively.

3.1. Energy Conservation

To derive the expression for the conserved energy of electrostatic fluctuations in an
unmagnetized plasma, we begin with the electrostatic analogue of Poynting’s theorem.
Beginning with the 1D electrostatic limit of the Ampere-Maxwell Law, ∂E/∂t = −4πj,
we multiply by E to obtain the rate of change of electrostatic field energy density,

∂

∂t

(

E2

8π

)

= −jE (3.3)

Next, we multiply the Vlasov equation (3.1) for species s by msv2/2 and integrate
over velocity and position. Exchanging the order of differentiation and integration of the
independent variables, we may obtain the form

∂

∂t

∫

dx

∫

dv
1

2
msv

2fs +

∫

dx
∂

∂x

[
∫

dv
1

2
msv

3fs

]

−
∫

dx
∂φ

∂x

∫

dv

(

qsv2

2

)

∂fs
∂v

= 0

(3.4)
The first term of this equation represents the rate of change of the microscopic kinetic
energy of species s

Ws ≡
∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.5)

The second term, associated with the ballistic behavior of particles, is a perfect differential
in x, yielding zero for either periodic boundary conditions, fs(x = −L/2, v) = fs(x =
L/2, v), or boundary conditions at infinity, limL→∞ fs(x = ±L/2, v) = 0. Physically, the
ballistic term can only transport energy from one position to another, so when integrated
over the volume yields a net change of zero for Ws. The third term may be integrated
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by parts in velocity to yield the result

∂Ws

∂t
=

∫ L/2

−L/2
dx

∂φ

∂x

∫ ∞

−∞
dv qsvfs = −

∫ L/2

−L/2
dx jsE (3.6)

where the current density for species s is given by js =
∫

dv qsvfs.
Since the total current density j =

∑

s js, we may integrate (3.3) over space and
combine it with (3.6) summed over species to obtain an expression for the conservation
of energy in a 1D-1V electrostatic plasma,

∂

∂t

∫ L/2

−L/2
dx

(

E2

8π

)

+
∂

∂t

∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs = 0 (3.7)

Therefore, the conserved Vlasov-Poisson energy W for electrostatic fluctuations in a
collisionless, unmagnetized plasma is given by

W =

∫ L/2

−L/2
dx

E2

8π
+
∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.8)

We also define the electrostatic field energy electrostatic field energy

Wφ ≡
∫ L/2

−L/2
dx

E2

8π
, (3.9)

such that the total conserved Vlasov-Poisson energy for a single ion species plasma is
given by

W = Wφ +Wi +We. (3.10)

3.2. Energy Transfer via Collisionless Wave-Particle Interactions

To illuminate the secular transfer of energy between the electrostatic field and the parti-
cles via resonant wave-particle interactions, it is instructive to examine more closely the
different contributions to the change in the particle energy, Ws. As (3.7) mandates, in
the Vlasov-Poisson system, the energy gain by the particles must be equal to the energy
lost from the electrostatic field,

∑

s ∂Ws/∂t = −∂Wφ/∂t. We may express the rate of
energy exchange (gain or loss) for species s by

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2 ∂fs
∂t

(3.11)

To progress further, we decompose the distribution function into an equilibrium and
perturbed component,

fs(x, v, t) = fs0(v) + δfs(x, v, t), (3.12)

where the equilibrium distribution function fs0(v) is assumed to be uniform in space and
static in time. We also make the additional assumption that fs0(v) is an even function
of velocity so that the equilibrium has no bulk plasma flow (first moment), but it need
not be a Maxwellian.
We emphasize here that we have made no ordering assumptions on the magnitude

of δfs relative to fs0, so the nonlinear evolution of the distribution function described
by this form is not limited in any way. The term δfs contains the entire (nonlinear)
perturbation, not just the lowest order (linear) perturbation. Of course, the physical
limitation

fs(x, v, t) = fs0(v) + δfs(x, v, t) ! 0 (3.13)

Separation useful in some 
cases but not necessary

Multiply by mv2/2 and integrate to obtain the energy equation
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t

= −v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2

[

−v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws

∂t
= −

∫

dx
∂φ

∂x

∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t

= −v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2

[

−v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws

∂t
= −

∫

dx
∂φ

∂x

∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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functions. This theoretical insight will be used to devise a novel analysis strategy using
correlated field and particle measurements to identify definitively the action of collision-
less wave-particle interactions in heliospheric plasmas using either spacecraft measure-
ments or nonlinear kinetic numerical simulations.
Here we review the properties of electrostatic fluctuations in a collisionless, unmag-

netized plasma that are relevant to the aim of identifying the secular energy transfer
via collisionless wave-particle interactions. For simplicity in the analytical calculations
presented here, we consider a strictly one-dimensional (1D-1V) kinetic system, but do
note that the physics of electrostatic fluctuations (∇ × E = 0) remains unchanged in
a realistic three-dimensional plasma. The dynamics of the electrostatic fluctuations in
a collisionless 1D-1V plasma is governed by the Vlasov-Poisson equations, where the
Vlasov equation determines the collisionless evolution of the distribution function for
each species s, fs(x, v, t), given by

∂fs
∂t

+ v
∂fs
∂x

−
qs
ms

∂φ

∂x

∂fs
∂v

= 0 (3.1)

and the Poisson equation yields the scalar electrostatic potential, φ(x, t),

∂2φ

∂x2
= −4π

∑

s

∫ +∞

−∞
dv qsfs. (3.2)

Physically, the second term of the Vlasov equation describes the ballistic behavior of
the particles in the collisionless plasma and the third term governs the response of the
particles to the electric field E = −∂φ/∂x. Here we denote these terms the ballistic term
and the wave-particle interaction term, respectively.

3.1. Energy Conservation

To derive the expression for the conserved energy of electrostatic fluctuations in an
unmagnetized plasma, we begin with the electrostatic analogue of Poynting’s theorem.
Beginning with the 1D electrostatic limit of the Ampere-Maxwell Law, ∂E/∂t = −4πj,
we multiply by E to obtain the rate of change of electrostatic field energy density,

∂

∂t

(

E2

8π

)

= −jE (3.3)

Next, we multiply the Vlasov equation (3.1) for species s by msv2/2 and integrate
over velocity and position. Exchanging the order of differentiation and integration of the
independent variables, we may obtain the form

∂

∂t

∫

dx

∫

dv
1

2
msv

2fs +

∫

dx
∂

∂x

[
∫

dv
1

2
msv

3fs

]

−
∫

dx
∂φ

∂x

∫

dv

(

qsv2

2

)

∂fs
∂v

= 0

(3.4)
The first term of this equation represents the rate of change of the microscopic kinetic
energy of species s

Ws ≡
∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.5)

The second term, associated with the ballistic behavior of particles, is a perfect differential
in x, yielding zero for either periodic boundary conditions, fs(x = −L/2, v) = fs(x =
L/2, v), or boundary conditions at infinity, limL→∞ fs(x = ±L/2, v) = 0. Physically, the
ballistic term can only transport energy from one position to another, so when integrated
over the volume yields a net change of zero for Ws. The third term may be integrated
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by parts in velocity to yield the result

∂Ws

∂t
=

∫ L/2

−L/2
dx

∂φ

∂x

∫ ∞

−∞
dv qsvfs = −

∫ L/2

−L/2
dx jsE (3.6)

where the current density for species s is given by js =
∫

dv qsvfs.
Since the total current density j =

∑

s js, we may integrate (3.3) over space and
combine it with (3.6) summed over species to obtain an expression for the conservation
of energy in a 1D-1V electrostatic plasma,

∂

∂t

∫ L/2

−L/2
dx

(

E2

8π

)

+
∂

∂t

∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs = 0 (3.7)

Therefore, the conserved Vlasov-Poisson energy W for electrostatic fluctuations in a
collisionless, unmagnetized plasma is given by

W =

∫ L/2

−L/2
dx

E2

8π
+
∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.8)

We also define the electrostatic field energy electrostatic field energy

Wφ ≡
∫ L/2

−L/2
dx

E2

8π
, (3.9)

such that the total conserved Vlasov-Poisson energy for a single ion species plasma is
given by

W = Wφ +Wi +We. (3.10)

3.2. Energy Transfer via Collisionless Wave-Particle Interactions

To illuminate the secular transfer of energy between the electrostatic field and the parti-
cles via resonant wave-particle interactions, it is instructive to examine more closely the
different contributions to the change in the particle energy, Ws. As (3.7) mandates, in
the Vlasov-Poisson system, the energy gain by the particles must be equal to the energy
lost from the electrostatic field,

∑

s ∂Ws/∂t = −∂Wφ/∂t. We may express the rate of
energy exchange (gain or loss) for species s by

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2 ∂fs
∂t

(3.11)

To progress further, we decompose the distribution function into an equilibrium and
perturbed component,

fs(x, v, t) = fs0(v) + δfs(x, v, t), (3.12)

where the equilibrium distribution function fs0(v) is assumed to be uniform in space and
static in time. We also make the additional assumption that fs0(v) is an even function
of velocity so that the equilibrium has no bulk plasma flow (first moment), but it need
not be a Maxwellian.
We emphasize here that we have made no ordering assumptions on the magnitude

of δfs relative to fs0, so the nonlinear evolution of the distribution function described
by this form is not limited in any way. The term δfs contains the entire (nonlinear)
perturbation, not just the lowest order (linear) perturbation. Of course, the physical
limitation

fs(x, v, t) = fs0(v) + δfs(x, v, t) ! 0 (3.13)

In terms of fluid moments

1
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by parts in velocity to yield the result

∂Ws

∂t
=

∫ L/2

−L/2
dx

∂φ

∂x

∫ ∞

−∞
dv qsvfs = −

∫ L/2

−L/2
dx jsE (3.6)

where the current density for species s is given by js =
∫

dv qsvfs.
Since the total current density j =

∑

s js, we may integrate (3.3) over space and
combine it with (3.6) summed over species to obtain an expression for the conservation
of energy in a 1D-1V electrostatic plasma,

∂

∂t

∫ L/2

−L/2
dx

(

E2

8π

)

+
∂

∂t

∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs = 0 (3.7)

Therefore, the conserved Vlasov-Poisson energy W for electrostatic fluctuations in a
collisionless, unmagnetized plasma is given by

W =

∫ L/2

−L/2
dx

E2

8π
+
∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.8)

We also define the electrostatic field energy electrostatic field energy

Wφ ≡
∫ L/2

−L/2
dx

E2

8π
, (3.9)

such that the total conserved Vlasov-Poisson energy for a single ion species plasma is
given by

W = Wφ +Wi +We. (3.10)

3.2. Energy Transfer via Collisionless Wave-Particle Interactions

To illuminate the secular transfer of energy between the electrostatic field and the parti-
cles via resonant wave-particle interactions, it is instructive to examine more closely the
different contributions to the change in the particle energy, Ws. As (3.7) mandates, in
the Vlasov-Poisson system, the energy gain by the particles must be equal to the energy
lost from the electrostatic field,

∑

s ∂Ws/∂t = −∂Wφ/∂t. We may express the rate of
energy exchange (gain or loss) for species s by

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2 ∂fs
∂t

(3.11)

To progress further, we decompose the distribution function into an equilibrium and
perturbed component,

fs(x, v, t) = fs0(v) + δfs(x, v, t), (3.12)

where the equilibrium distribution function fs0(v) is assumed to be uniform in space and
static in time. We also make the additional assumption that fs0(v) is an even function
of velocity so that the equilibrium has no bulk plasma flow (first moment), but it need
not be a Maxwellian.
We emphasize here that we have made no ordering assumptions on the magnitude

of δfs relative to fs0, so the nonlinear evolution of the distribution function described
by this form is not limited in any way. The term δfs contains the entire (nonlinear)
perturbation, not just the lowest order (linear) perturbation. Of course, the physical
limitation

fs(x, v, t) = fs0(v) + δfs(x, v, t) ! 0 (3.13)
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t

= −v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2

[

−v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws

∂t
= −

∫

dx
∂φ

∂x

∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t

= −v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2

[

−v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws

∂t
= −

∫

dx
∂φ

∂x

∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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energy from the fields to the particles by either form of the following expression,

∂Ws

∂t
= −

∫

dx

∫

dv qs
v2

2

∂δfs(x, v, t)

∂v
E(x, t) =

∫

dx

∫

dv qsvδfs(x, v, t)E(x, t) (3.18)

3.3. Diagnosing Secular Energy Transfer

The key challenge in diagnosing the collisionless damping of fluctuations in a turbulent
plasma is to separate the often small-amplitude signal of the secular energy transfer
from the generally much larger amplitude signal of the oscillating energy transfer. The
arguments of the preceding section suggest that by integrating over all space—or taking
a spatial average, as is done in quasilinear theory—we can average out the zero net effect
of the oscillating energy transfer and extract the smaller secular energy transfer that
is associated with collisionless damping. In this case, the spatial integration eliminates
the contribution from the ballistic and linear wave-particle interaction terms in (3.14),
isolating the nonzero net effect of the secular energy transfer due to the nonlinear wave-
particle interaction term.
Of course, in a numerical simulation where all of the spatial information is known,

spatial integration can be used to isolate the secular energy transfer. But such spatial
information is not accessible observationally, where spacecraft measurements are typically
made at only a single point (or at most, a few points) in space. Furthermore, numerical
simulations of plasma turbulence provide strong evidence that energy dissipation is often
highly localized in space (Wan et al. 2012; Karimabadi et al. 2013; TenBarge & Howes
2013; Wu et al. 2013; Zhdankin et al. 2013, 2015b); so, even in numerical simulations,
integration over a volume larger than the region of strong dissipation may obscure the
details of the local dissipation mechanism, making it more difficult to identify the physical
mechanism responsible. Here we aim to develop a method that can be used to analyze
the secular energy transfer using single-point measurements of the electromagnetic fields
and velocity distribution functions, enabling an improved analysis of the collisionless
damping of turbulent fluctuations in both spacecraft measurements and kinetic numerical
simulations.
Let us define the phase-space energy density for a particle species s by ws(x, v, t) =

msv2fs(x, v, t)/2. Note that, for the 1D-1V Vlasov-Poisson system, this is the energy
density per unit length per unit velocity. The integral of ws(x, v, t) over all velocity
yields the spatial energy density of the plasma species as a function of position, which
is the usual meaning of the term energy density. Subsequent integration over the spatial
volume yields the total microscopic kinetic energy of the species, Ws.
If we want to understand how the phase-space energy density evolves in time, we can

take the time derivative of ws(x, v, t) and replace ∂fs/∂t using the Vlasov equation to
obtain an expression for the instantaneous change of the phase-space energy density,

∂ws(x, v, t)

∂t
= −

1

2
msv

3 ∂δfs
∂x

− qs
v2

2

∂fs0(v)

∂v
E(x, t)− qs

v2

2

∂δfs(x, v, t)

∂v
E(x, t) (3.19)

From the analysis of the energy conservation equation (3.15), we know that, if this equa-
tion is integrated over all velocity and all physical space, the only third term contributes
to the secular energy transfer from fields to particles (or vice versa). However, in the ab-
sence of these integrations, all three terms contribute to the instantaneous phase-space
energy density change at each point in (x, v) phase space.

3.4. Field-Particle Correlations

The form of the term responsible for the secular energy transfer in (3.19) suggests that the
product of (−qsv2/2)(∂δfs(x, v, t)/∂v) and E(x, t) provides a direct measure of the rate of

Field-Particle Correlations 7

functions. This theoretical insight will be used to devise a novel analysis strategy using
correlated field and particle measurements to identify definitively the action of collision-
less wave-particle interactions in heliospheric plasmas using either spacecraft measure-
ments or nonlinear kinetic numerical simulations.
Here we review the properties of electrostatic fluctuations in a collisionless, unmag-

netized plasma that are relevant to the aim of identifying the secular energy transfer
via collisionless wave-particle interactions. For simplicity in the analytical calculations
presented here, we consider a strictly one-dimensional (1D-1V) kinetic system, but do
note that the physics of electrostatic fluctuations (∇ × E = 0) remains unchanged in
a realistic three-dimensional plasma. The dynamics of the electrostatic fluctuations in
a collisionless 1D-1V plasma is governed by the Vlasov-Poisson equations, where the
Vlasov equation determines the collisionless evolution of the distribution function for
each species s, fs(x, v, t), given by

∂fs
∂t

+ v
∂fs
∂x

−
qs
ms

∂φ

∂x

∂fs
∂v

= 0 (3.1)

and the Poisson equation yields the scalar electrostatic potential, φ(x, t),

∂2φ

∂x2
= −4π

∑

s

∫ +∞

−∞
dv qsfs. (3.2)

Physically, the second term of the Vlasov equation describes the ballistic behavior of
the particles in the collisionless plasma and the third term governs the response of the
particles to the electric field E = −∂φ/∂x. Here we denote these terms the ballistic term
and the wave-particle interaction term, respectively.

3.1. Energy Conservation

To derive the expression for the conserved energy of electrostatic fluctuations in an
unmagnetized plasma, we begin with the electrostatic analogue of Poynting’s theorem.
Beginning with the 1D electrostatic limit of the Ampere-Maxwell Law, ∂E/∂t = −4πj,
we multiply by E to obtain the rate of change of electrostatic field energy density,

∂

∂t

(

E2

8π

)

= −jE (3.3)

Next, we multiply the Vlasov equation (3.1) for species s by msv2/2 and integrate
over velocity and position. Exchanging the order of differentiation and integration of the
independent variables, we may obtain the form

∂

∂t

∫

dx

∫

dv
1

2
msv

2fs +

∫

dx
∂

∂x

[
∫

dv
1

2
msv

3fs

]

−
∫

dx
∂φ

∂x

∫

dv

(

qsv2

2

)

∂fs
∂v

= 0

(3.4)
The first term of this equation represents the rate of change of the microscopic kinetic
energy of species s

Ws ≡
∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.5)

The second term, associated with the ballistic behavior of particles, is a perfect differential
in x, yielding zero for either periodic boundary conditions, fs(x = −L/2, v) = fs(x =
L/2, v), or boundary conditions at infinity, limL→∞ fs(x = ±L/2, v) = 0. Physically, the
ballistic term can only transport energy from one position to another, so when integrated
over the volume yields a net change of zero for Ws. The third term may be integrated

Field-Particle Correlations 9

must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t

= −v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2

[

−v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws

∂t
= −

∫

dx
∂φ

∂x

∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of



Vlasov-Poisson [Howes, Klein, & Li (2017)]
10 G. G. Howes, K. G. Klein, and T. C. Li

energy from the fields to the particles by either form of the following expression,

∂Ws

∂t
= −

∫

dx

∫

dv qs
v2

2

∂δfs(x, v, t)

∂v
E(x, t) =

∫

dx

∫

dv qsvδfs(x, v, t)E(x, t) (3.18)

3.3. Diagnosing Secular Energy Transfer

The key challenge in diagnosing the collisionless damping of fluctuations in a turbulent
plasma is to separate the often small-amplitude signal of the secular energy transfer
from the generally much larger amplitude signal of the oscillating energy transfer. The
arguments of the preceding section suggest that by integrating over all space—or taking
a spatial average, as is done in quasilinear theory—we can average out the zero net effect
of the oscillating energy transfer and extract the smaller secular energy transfer that
is associated with collisionless damping. In this case, the spatial integration eliminates
the contribution from the ballistic and linear wave-particle interaction terms in (3.14),
isolating the nonzero net effect of the secular energy transfer due to the nonlinear wave-
particle interaction term.
Of course, in a numerical simulation where all of the spatial information is known,

spatial integration can be used to isolate the secular energy transfer. But such spatial
information is not accessible observationally, where spacecraft measurements are typically
made at only a single point (or at most, a few points) in space. Furthermore, numerical
simulations of plasma turbulence provide strong evidence that energy dissipation is often
highly localized in space (Wan et al. 2012; Karimabadi et al. 2013; TenBarge & Howes
2013; Wu et al. 2013; Zhdankin et al. 2013, 2015b); so, even in numerical simulations,
integration over a volume larger than the region of strong dissipation may obscure the
details of the local dissipation mechanism, making it more difficult to identify the physical
mechanism responsible. Here we aim to develop a method that can be used to analyze
the secular energy transfer using single-point measurements of the electromagnetic fields
and velocity distribution functions, enabling an improved analysis of the collisionless
damping of turbulent fluctuations in both spacecraft measurements and kinetic numerical
simulations.
Let us define the phase-space energy density for a particle species s by ws(x, v, t) =

msv2fs(x, v, t)/2. Note that, for the 1D-1V Vlasov-Poisson system, this is the energy
density per unit length per unit velocity. The integral of ws(x, v, t) over all velocity
yields the spatial energy density of the plasma species as a function of position, which
is the usual meaning of the term energy density. Subsequent integration over the spatial
volume yields the total microscopic kinetic energy of the species, Ws.
If we want to understand how the phase-space energy density evolves in time, we can

take the time derivative of ws(x, v, t) and replace ∂fs/∂t using the Vlasov equation to
obtain an expression for the instantaneous change of the phase-space energy density,

∂ws(x, v, t)

∂t
= −

1

2
msv

3 ∂δfs
∂x

− qs
v2

2

∂fs0(v)

∂v
E(x, t)− qs

v2

2

∂δfs(x, v, t)

∂v
E(x, t) (3.19)

From the analysis of the energy conservation equation (3.15), we know that, if this equa-
tion is integrated over all velocity and all physical space, the only third term contributes
to the secular energy transfer from fields to particles (or vice versa). However, in the ab-
sence of these integrations, all three terms contribute to the instantaneous phase-space
energy density change at each point in (x, v) phase space.

3.4. Field-Particle Correlations

The form of the term responsible for the secular energy transfer in (3.19) suggests that the
product of (−qsv2/2)(∂δfs(x, v, t)/∂v) and E(x, t) provides a direct measure of the rate of
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energy transfer (possibly including an oscillating component). To isolate the small secular
component, we take the unnormalized field-particle correlation, Cτ (−qsv2/2∂δfs/∂v, E),
at a single point in space over a selected interval of time τ . By correlating the two signals
over a sufficiently long time (at least several linear wave periods, τ ≫ 2πω), it enables
the oscillating energy transfer to be averaged out, extracting the smaller signal of the
secular energy transfer.
For measurements of the velocity distribution and the electric field at a single point in

space, x = x0, this correlation is a function of velocity, time, and the correlation interval,

C1(v, t, τ) = Cτ

(

−qs
v2

2

∂δfs(x0, v, t)

∂v
, E(x0, t)

)

. (3.20)

Therefore, the general idea of diagnosing the energy transfer at each point in (x, v) phase
space reduces, due to the observational constraints of single-point measurements, to the
case of determining the distribution of the energy transfer rate in velocity space. A key
advance with this method is that determining how the secular energy transfer rate varies
in velocity space provides valuable new information about the physical mechanism re-
sponsible for the collisionless damping of the fluctuations. Different mechanisms, such as
Landau damping or stochastic ion heating, are likely to have distinct signatures of this
damping in velocity space. In this paper, we illustrate this field-particle correlation analy-
sis method using the case of the Landau damping of Langmuir in a 1D-1V Vlasov-Poisson
plasma, but the concept of using field-particle correlations to diagnose collisionless en-
ergy transfer is extremely general, and it can be also applied to examine the damping of
turbulence in heliospheric plasmas using single-point spacecraft measurements.
In closing, there are two issues that merit further discussion. First, because the product

of the two terms that are correlated is a direct measure of the instantaneous collisionless
energy transfer (specifically, just the component due to the nonlinear wave-particle inter-
action term), the field-particle correlation is to be performed in the following way: (i) the
mean values of the two correlated variables are not subtracted before multiplication; and
(ii) the correlation is not normalized by the variances of each of the correlated variables.
Although a normalized correlation can be performed and indeed contains information
about the nature of the collisionless wave-particle interactions, the process of normaliza-
tion effectively removes the amplitude variation of the energy transfer rate as a function
of velocity, a vital piece of information provided by this analysis.
The second issue regards the applicability of the particular field-particle correlation

given in (3.20) to spacecraft observations. The often low velocity-space resolution of
particle measurements by spacecraft instrumentation and the corruption by noise for
low particle count rates mean that accurate computation of the necessary derivative
∂δfs(x, v, t)/∂v may be difficult, or even impossible. But, as shown in Section 3.2, upon
integration over velocity space, both (−qsv2/2)(∂δfs(x, v, t)/∂v) and qsvδfs(x, v, t) yield
the same result for the total species current, js(x, t). Therefore, we propose an alternative
field-particle correlation

C2(v, t, τ) = Cτ (qsvδfs(x0, v, t), E(x0, t)) (3.21)

that may be more suitable for implementation with low resolution spacecraft measure-
ments of particle velocity distribution functions. Different collisionless damping mecha-
nisms are likely to produce distinct signatures of any chosen form of field-particle corre-
lation in velocity space. So, although the form qsvδfs(x, v, t)E(x, t) does not correspond
directly to the energy transfer rate at a point in (x, v) phase space as given by (3.19),
this alternative field-particle correlation may still be valuable in distinguishing one col-
lisionless damping process from another.
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)
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advance with this method is that determining how the secular energy transfer rate varies
in velocity space provides valuable new information about the physical mechanism re-
sponsible for the collisionless damping of the fluctuations. Different mechanisms, such as
Landau damping or stochastic ion heating, are likely to have distinct signatures of this
damping in velocity space. In this paper, we illustrate this field-particle correlation analy-
sis method using the case of the Landau damping of Langmuir in a 1D-1V Vlasov-Poisson
plasma, but the concept of using field-particle correlations to diagnose collisionless en-
ergy transfer is extremely general, and it can be also applied to examine the damping of
turbulence in heliospheric plasmas using single-point spacecraft measurements.
In closing, there are two issues that merit further discussion. First, because the product

of the two terms that are correlated is a direct measure of the instantaneous collisionless
energy transfer (specifically, just the component due to the nonlinear wave-particle inter-
action term), the field-particle correlation is to be performed in the following way: (i) the
mean values of the two correlated variables are not subtracted before multiplication; and
(ii) the correlation is not normalized by the variances of each of the correlated variables.
Although a normalized correlation can be performed and indeed contains information
about the nature of the collisionless wave-particle interactions, the process of normaliza-
tion effectively removes the amplitude variation of the energy transfer rate as a function
of velocity, a vital piece of information provided by this analysis.
The second issue regards the applicability of the particular field-particle correlation

given in (3.20) to spacecraft observations. The often low velocity-space resolution of
particle measurements by spacecraft instrumentation and the corruption by noise for
low particle count rates mean that accurate computation of the necessary derivative
∂δfs(x, v, t)/∂v may be difficult, or even impossible. But, as shown in Section 3.2, upon
integration over velocity space, both (−qsv2/2)(∂δfs(x, v, t)/∂v) and qsvδfs(x, v, t) yield
the same result for the total species current, js(x, t). Therefore, we propose an alternative
field-particle correlation

C2(v, t, τ) = Cτ (qsvδfs(x0, v, t), E(x0, t)) (3.21)

that may be more suitable for implementation with low resolution spacecraft measure-
ments of particle velocity distribution functions. Different collisionless damping mecha-
nisms are likely to produce distinct signatures of any chosen form of field-particle corre-
lation in velocity space. So, although the form qsvδfs(x, v, t)E(x, t) does not correspond
directly to the energy transfer rate at a point in (x, v) phase space as given by (3.19),
this alternative field-particle correlation may still be valuable in distinguishing one col-
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Figure 10. For Case I, (a) the total perturbed electron distribution function δfe(0, v, t)
(colormap) and (b) electric field E(0, t) measured at x = 0 as a function of normalized time

ωpet.

these definitions, the correlation at time t = ti is defined by

C1(v, ti, τ) =
1

N

i+N
∑

j=i

qs
v2

2

∂δfsj(v)

∂v
Ej (6.1)

The discrete velocity derivatives are computed using the same second-order, centered
finite difference scheme described in Appendix A. Note also that this scheme may be
used even for a point of measurement moving with respect to the plasma by simply
replacing x0 = x0(t).

6.1. Case I: Moderately Damped Standing Langmuir Wave

Before presenting the results of the field-particle correlation technique applied to the
problem of the collisionless damping of electrostatic Langmuir waves, we begin with a plot
of the single-point measurements used for this analysis. For the case of the moderately
damped standing Langmuir wave pattern presented in section 5.1, we plot in figure 10
(a) the total perturbed electron distribution function δfe(0, v, t) (colormap) and (b) the
electric field E(0, t) measured at x = 0 as a function of normalized time ωpet. Here the
electric field is normalized to E0 = qeEλde/te. The data plotted in figure 10 correspond
directly to observable quantities derived from single-point spacecraft measurements.
In figure 11, we plot the products of the quantities used in the correlations C1(v, t, τ)

and C2(v, t, τ): (a) (−qev2/2)(∂δfe(0, v, t)/∂v)E(0, t) and (b) qevδfe(0, v, t)E(0, t) as a
function of velocity v/vte and time ωpet. Note that the regions of velocity space where
these functions have a significant amplitude are not especially well correlated with the
resonant velocities (dot-dashed green). Without taking the correlation of these quanti-
ties over an appropriate time interval τ (typically one or more periods of a wave), the
small amplitude signal of the secular energy transfer is masked by the much larger am-
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Figure 9. (a) Total electron distribution function evaluated at position x = 0, fe(0, v, t) (thin
magenta), the spatially averaged, quasilinear distribution function feQL(v, t) (thick magenta),
and the equilibirum electron distribution function fe0 (black). (b) The nonlinear wave-parti-
cle interaction component of the perturbed electron distribution function at position x = 0,
δfeWn(0, v, t) (thin red) and the quasilinear perturbed distribution function δfeQL(v, t) (thick
red) coincide exactly here. The quasilinear flattening of the distribution function at the reso-
nant velocity v = ω/k (dashed black) is apparent in the total quasilinear distribution function
feQL(v, t) (thick magenta).

6. Field-Particle Correlations

Here we define specifically how we compute the unnormalized correlation given in
(3.20). Consider distribution function and electric field measurements at point x = x0

measured at a time cadence of ∆t. Labelling the discrete times of the measurements as
tj ≡ t(j∆t) for j = 0, 1, 2, . . ., we define δfsj(v) ≡ δfs(x0, v, tj) and Ej ≡ E(x0, tj). For
a choosen correlation time of τ = N∆t, N points will be used for the correlation. With
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Here we define specifically how we compute the unnormalized correlation given in
(3.20). Consider distribution function and electric field measurements at point x = x0

measured at a time cadence of ∆t. Labelling the discrete times of the measurements as
tj ≡ t(j∆t) for j = 0, 1, 2, . . ., we define δfsj(v) ≡ δfs(x0, v, tj) and Ej ≡ E(x0, tj). For
a choosen correlation time of τ = N∆t, N points will be used for the correlation. With
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energy from the fields to the particles by either form of the following expression,

∂Ws

∂t
= −

∫

dx

∫

dv qs
v2

2

∂δfs(x, v, t)

∂v
E(x, t) =

∫

dx

∫

dv qsvδfs(x, v, t)E(x, t) (3.18)

3.3. Diagnosing Secular Energy Transfer

The key challenge in diagnosing the collisionless damping of fluctuations in a turbulent
plasma is to separate the often small-amplitude signal of the secular energy transfer
from the generally much larger amplitude signal of the oscillating energy transfer. The
arguments of the preceding section suggest that by integrating over all space—or taking
a spatial average, as is done in quasilinear theory—we can average out the zero net effect
of the oscillating energy transfer and extract the smaller secular energy transfer that
is associated with collisionless damping. In this case, the spatial integration eliminates
the contribution from the ballistic and linear wave-particle interaction terms in (3.14),
isolating the nonzero net effect of the secular energy transfer due to the nonlinear wave-
particle interaction term.
Of course, in a numerical simulation where all of the spatial information is known,

spatial integration can be used to isolate the secular energy transfer. But such spatial
information is not accessible observationally, where spacecraft measurements are typically
made at only a single point (or at most, a few points) in space. Furthermore, numerical
simulations of plasma turbulence provide strong evidence that energy dissipation is often
highly localized in space (Wan et al. 2012; Karimabadi et al. 2013; TenBarge & Howes
2013; Wu et al. 2013; Zhdankin et al. 2013, 2015b); so, even in numerical simulations,
integration over a volume larger than the region of strong dissipation may obscure the
details of the local dissipation mechanism, making it more difficult to identify the physical
mechanism responsible. Here we aim to develop a method that can be used to analyze
the secular energy transfer using single-point measurements of the electromagnetic fields
and velocity distribution functions, enabling an improved analysis of the collisionless
damping of turbulent fluctuations in both spacecraft measurements and kinetic numerical
simulations.
Let us define the phase-space energy density for a particle species s by ws(x, v, t) =

msv2fs(x, v, t)/2. Note that, for the 1D-1V Vlasov-Poisson system, this is the energy
density per unit length per unit velocity. The integral of ws(x, v, t) over all velocity
yields the spatial energy density of the plasma species as a function of position, which
is the usual meaning of the term energy density. Subsequent integration over the spatial
volume yields the total microscopic kinetic energy of the species, Ws.
If we want to understand how the phase-space energy density evolves in time, we can

take the time derivative of ws(x, v, t) and replace ∂fs/∂t using the Vlasov equation to
obtain an expression for the instantaneous change of the phase-space energy density,

∂ws(x, v, t)

∂t
= −

1

2
msv

3 ∂δfs
∂x

− qs
v2

2

∂fs0(v)

∂v
E(x, t)− qs

v2

2

∂δfs(x, v, t)

∂v
E(x, t) (3.19)

From the analysis of the energy conservation equation (3.15), we know that, if this equa-
tion is integrated over all velocity and all physical space, the only third term contributes
to the secular energy transfer from fields to particles (or vice versa). However, in the ab-
sence of these integrations, all three terms contribute to the instantaneous phase-space
energy density change at each point in (x, v) phase space.

3.4. Field-Particle Correlations

The form of the term responsible for the secular energy transfer in (3.19) suggests that the
product of (−qsv2/2)(∂δfs(x, v, t)/∂v) and E(x, t) provides a direct measure of the rate of

Field-Particle Correlations 11

energy transfer (possibly including an oscillating component). To isolate the small secular
component, we take the unnormalized field-particle correlation, Cτ (−qsv2/2∂δfs/∂v, E),
at a single point in space over a selected interval of time τ . By correlating the two signals
over a sufficiently long time (at least several linear wave periods, τ ≫ 2πω), it enables
the oscillating energy transfer to be averaged out, extracting the smaller signal of the
secular energy transfer.
For measurements of the velocity distribution and the electric field at a single point in

space, x = x0, this correlation is a function of velocity, time, and the correlation interval,

C1(v, t, τ) = Cτ

(

−qs
v2

2

∂δfs(x0, v, t)

∂v
, E(x0, t)

)

. (3.20)

Therefore, the general idea of diagnosing the energy transfer at each point in (x, v) phase
space reduces, due to the observational constraints of single-point measurements, to the
case of determining the distribution of the energy transfer rate in velocity space. A key
advance with this method is that determining how the secular energy transfer rate varies
in velocity space provides valuable new information about the physical mechanism re-
sponsible for the collisionless damping of the fluctuations. Different mechanisms, such as
Landau damping or stochastic ion heating, are likely to have distinct signatures of this
damping in velocity space. In this paper, we illustrate this field-particle correlation analy-
sis method using the case of the Landau damping of Langmuir in a 1D-1V Vlasov-Poisson
plasma, but the concept of using field-particle correlations to diagnose collisionless en-
ergy transfer is extremely general, and it can be also applied to examine the damping of
turbulence in heliospheric plasmas using single-point spacecraft measurements.
In closing, there are two issues that merit further discussion. First, because the product

of the two terms that are correlated is a direct measure of the instantaneous collisionless
energy transfer (specifically, just the component due to the nonlinear wave-particle inter-
action term), the field-particle correlation is to be performed in the following way: (i) the
mean values of the two correlated variables are not subtracted before multiplication; and
(ii) the correlation is not normalized by the variances of each of the correlated variables.
Although a normalized correlation can be performed and indeed contains information
about the nature of the collisionless wave-particle interactions, the process of normaliza-
tion effectively removes the amplitude variation of the energy transfer rate as a function
of velocity, a vital piece of information provided by this analysis.
The second issue regards the applicability of the particular field-particle correlation

given in (3.20) to spacecraft observations. The often low velocity-space resolution of
particle measurements by spacecraft instrumentation and the corruption by noise for
low particle count rates mean that accurate computation of the necessary derivative
∂δfs(x, v, t)/∂v may be difficult, or even impossible. But, as shown in Section 3.2, upon
integration over velocity space, both (−qsv2/2)(∂δfs(x, v, t)/∂v) and qsvδfs(x, v, t) yield
the same result for the total species current, js(x, t). Therefore, we propose an alternative
field-particle correlation

C2(v, t, τ) = Cτ (qsvδfs(x0, v, t), E(x0, t)) (3.21)

that may be more suitable for implementation with low resolution spacecraft measure-
ments of particle velocity distribution functions. Different collisionless damping mecha-
nisms are likely to produce distinct signatures of any chosen form of field-particle corre-
lation in velocity space. So, although the form qsvδfs(x, v, t)E(x, t) does not correspond
directly to the energy transfer rate at a point in (x, v) phase space as given by (3.19),
this alternative field-particle correlation may still be valuable in distinguishing one col-
lisionless damping process from another.
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tion effectively removes the amplitude variation of the energy transfer rate as a function
of velocity, a vital piece of information provided by this analysis.
The second issue regards the applicability of the particular field-particle correlation

given in (3.20) to spacecraft observations. The often low velocity-space resolution of
particle measurements by spacecraft instrumentation and the corruption by noise for
low particle count rates mean that accurate computation of the necessary derivative
∂δfs(x, v, t)/∂v may be difficult, or even impossible. But, as shown in Section 3.2, upon
integration over velocity space, both (−qsv2/2)(∂δfs(x, v, t)/∂v) and qsvδfs(x, v, t) yield
the same result for the total species current, js(x, t). Therefore, we propose an alternative
field-particle correlation

C2(v, t, τ) = Cτ (qsvδfs(x0, v, t), E(x0, t)) (3.21)

that may be more suitable for implementation with low resolution spacecraft measure-
ments of particle velocity distribution functions. Different collisionless damping mecha-
nisms are likely to produce distinct signatures of any chosen form of field-particle corre-
lation in velocity space. So, although the form qsvδfs(x, v, t)E(x, t) does not correspond
directly to the energy transfer rate at a point in (x, v) phase space as given by (3.19),
this alternative field-particle correlation may still be valuable in distinguishing one col-
lisionless damping process from another.
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Figure 10. For Case I, (a) the total perturbed electron distribution function δfe(0, v, t)
(colormap) and (b) electric field E(0, t) measured at x = 0 as a function of normalized time

ωpet.

these definitions, the correlation at time t = ti is defined by

C1(v, ti, τ) =
1

N

i+N
∑

j=i

qs
v2

2

∂δfsj(v)

∂v
Ej (6.1)

The discrete velocity derivatives are computed using the same second-order, centered
finite difference scheme described in Appendix A. Note also that this scheme may be
used even for a point of measurement moving with respect to the plasma by simply
replacing x0 = x0(t).

6.1. Case I: Moderately Damped Standing Langmuir Wave

Before presenting the results of the field-particle correlation technique applied to the
problem of the collisionless damping of electrostatic Langmuir waves, we begin with a plot
of the single-point measurements used for this analysis. For the case of the moderately
damped standing Langmuir wave pattern presented in section 5.1, we plot in figure 10
(a) the total perturbed electron distribution function δfe(0, v, t) (colormap) and (b) the
electric field E(0, t) measured at x = 0 as a function of normalized time ωpet. Here the
electric field is normalized to E0 = qeEλde/te. The data plotted in figure 10 correspond
directly to observable quantities derived from single-point spacecraft measurements.
In figure 11, we plot the products of the quantities used in the correlations C1(v, t, τ)

and C2(v, t, τ): (a) (−qev2/2)(∂δfe(0, v, t)/∂v)E(0, t) and (b) qevδfe(0, v, t)E(0, t) as a
function of velocity v/vte and time ωpet. Note that the regions of velocity space where
these functions have a significant amplitude are not especially well correlated with the
resonant velocities (dot-dashed green). Without taking the correlation of these quanti-
ties over an appropriate time interval τ (typically one or more periods of a wave), the
small amplitude signal of the secular energy transfer is masked by the much larger am-
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Figure 9. (a) Total electron distribution function evaluated at position x = 0, fe(0, v, t) (thin
magenta), the spatially averaged, quasilinear distribution function feQL(v, t) (thick magenta),
and the equilibirum electron distribution function fe0 (black). (b) The nonlinear wave-parti-
cle interaction component of the perturbed electron distribution function at position x = 0,
δfeWn(0, v, t) (thin red) and the quasilinear perturbed distribution function δfeQL(v, t) (thick
red) coincide exactly here. The quasilinear flattening of the distribution function at the reso-
nant velocity v = ω/k (dashed black) is apparent in the total quasilinear distribution function
feQL(v, t) (thick magenta).

6. Field-Particle Correlations

Here we define specifically how we compute the unnormalized correlation given in
(3.20). Consider distribution function and electric field measurements at point x = x0

measured at a time cadence of ∆t. Labelling the discrete times of the measurements as
tj ≡ t(j∆t) for j = 0, 1, 2, . . ., we define δfsj(v) ≡ δfs(x0, v, tj) and Ej ≡ E(x0, tj). For
a choosen correlation time of τ = N∆t, N points will be used for the correlation. With
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Proton shock result at x=175λe, τωpe=386 (Gkeyll) 
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Figure 2. Power spectra for the βp = 0.3, 1.0 and 3.0 simulations (left column), with the stan-
dard deviation of the spectra shown as grey shading. An evaluation of the energy injected into
and collisionally dissipated from the simulations (right column) demonstrates the steady-state
nature of the turbulence.

tary distribution function gs describes perturbations to the background distribution in
the frame moving with an Alfvén wave. Such perturbations are associated with the com-
pressive components of turbulence and therefore are associated with the collisionless
damping mechanism under consideration. Field-particle correlations calculated using hs

or fs (not shown) yield qualitatively and quantitatively similar results to those computed
with gs.
We perform three turbulent simulations with nearly identical setups. The number of

simulated grid points is (nx, ny, nz, nλ, nE) = (64, 64, 32, 64, 32), where nλ and nE are
the number of pitch angle and energy points. The fully resolved simulation domain spans
k⊥ρp ∈ [0.25, 5.5], or k⊥ρe ∈ [0.04, 0.97] for the reduced mass ratio under consideration,
mp/me = 32. The maximum v⊥ and v∥ resolved for each species is 4vts. We set βp to
0.3, 1.0, and 3.0 for the three simulations. The simulations are driven using an oscillat-
ing Langevin antenna (TenBarge et al. 2014b) that drives fluctuations with wavevectors
(kx, ky, kz) = (1, 0,±1) and (0, 1,±1) plus their complex conjugates with amplitudes
sufficient to drive the system into a staturated state of strong turbulence. All three sim-
ulations are run to at least tωA = 20, where ωA = k∥vA with k∥ = 2π/L∥. The proton
collision frequency is set at approximately a tenth of the maximum linear proton damp-
ing rate, νp/k∥vtp = 5× 10−5, 2× 10−4, and 1× 10−3 for the βp = 0.3, 1.0, and 3.0 runs
respectively.
Power spectra for the three turbulent simulations are shown in Fig. 2, averaged over

an outer-scale Alfvén turn-around time starting once the turbulence has reached steady
state, at around tωA = 6. The surrounding grey shaded regions represent the standard de-
viation of the spectra over the time interval used for averaging. We note there is evidence
of bottlenecking (flattening of the spectra) at the smallest scales in these simulations, as
we have elected to not introduce artificial hypercollisionality which may obscure signa-
tures of the collisionless damping mechanisms in the velocity distribution function. To
ensure the simulations are in a steady state, we evaluate the external energy injected into
the system via the antenna (black lines), the collisional entropy production (pink), and
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mp/me = 32. The maximum v⊥ and v∥ resolved for each species is 4vts. We set βp to
0.3, 1.0, and 3.0 for the three simulations. The simulations are driven using an oscillat-
ing Langevin antenna (TenBarge et al. 2014b) that drives fluctuations with wavevectors
(kx, ky, kz) = (1, 0,±1) and (0, 1,±1) plus their complex conjugates with amplitudes
sufficient to drive the system into a staturated state of strong turbulence. All three sim-
ulations are run to at least tωA = 20, where ωA = k∥vA with k∥ = 2π/L∥. The proton
collision frequency is set at approximately a tenth of the maximum linear proton damp-
ing rate, νp/k∥vtp = 5× 10−5, 2× 10−4, and 1× 10−3 for the βp = 0.3, 1.0, and 3.0 runs
respectively.
Power spectra for the three turbulent simulations are shown in Fig. 2, averaged over

an outer-scale Alfvén turn-around time starting once the turbulence has reached steady
state, at around tωA = 6. The surrounding grey shaded regions represent the standard de-
viation of the spectra over the time interval used for averaging. We note there is evidence
of bottlenecking (flattening of the spectra) at the smallest scales in these simulations, as
we have elected to not introduce artificial hypercollisionality which may obscure signa-
tures of the collisionless damping mechanisms in the velocity distribution function. To
ensure the simulations are in a steady state, we evaluate the external energy injected into
the system via the antenna (black lines), the collisional entropy production (pink), and
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Figure 6. (a) The gyrotropic complementary distribution function gp(v∥, v⊥) at a single point
in the βp = 1.0 turbulent simulation, as well as the correlations (b) CE∥(τ = 0) and (c)
CE∥(τωA = 10.4) at time tωA = 14.1. The resonant parallel velocity associated with the maxi-
mum proton damping rate is shown as a solid grey vertical line.

just the fraction of particles within the resonant energy range from v1 to v2, given by
∫ v2
v1

dv∥ exp[−v2∥/v
2
tp]/

∫ 4vtp
−4vtp

dv∥ exp[−v2∥/v
2
tp], has a value of 0.134 (vertical grey dot-

dashed line), much smaller than the fraction computed from the simulation, R ≃ 0.9,
shown in Fig. 5(f). Therefore, the resonant particles dominate the energy transfer, as
expected for the Landau damping occurring in this system.

6. Field-Particle Correlations in Strong Plasma Turbulence

6.1. Single-Point Field-Particle Correlations

With the single KAW results providing context for the interpretation of field-particle
correlation results, we next apply the field-particle correlation technique to data from
a single spatial point r0 = [x, y, z] = [0, 10.2, 0]ρp in the turbulent βp = 1.0 simulation
domain, where [0, 0, 0] is the midpoint of the simulation box. In panel (a) of Fig. 6,
the complementary gyrokinetic distribution function gp(v∥, v⊥) is plotted at r0 in the
βp = 1.0 run at a time sufficiently late in the run for the turbulence to be fully developed,
tωA = 14.1. Solid grey lines indicate the parallel resonant velocity for a KAW with
the peak proton damping rate, vres = 1.282vtp, and dashed lines indicate the resonant
velocities associated with KAWs having proton damping rates equal to 1/e of the peak
value, as identified in Fig. 1. We calculate the instantaneous phase-space energy density
transfer CE∥

(v∥, v⊥, τ = 0) in panel (b), and in panel (c), we calculate the correlation
averaged over an interval τωA = 10.4.
Unlike the case for a single KAW presented in Fig. 3(a), Fig. 6(a) shows that the

structure of the complementary distribution function gp(v∥, v⊥) for the strong turbulence
simulation has large amplitude fluctuations spread more broadly over velocity space,
with the largest amplitude fluctuations occurring at velocities |v∥| ≪ vtp. Note also that,
for the single KAW case in Fig. 3(a), the fluctuations in gp(v∥, v⊥) are almost entirely
restricted to v∥ > 0; the reason is because the wave is propagating in only one direction.
In the strong turbulence simulation shown in Fig. 6(a), Alfvénic fluctuations propagate
in both directions, thereby leading to significant fluctuations in gp(v∥, v⊥) at both v∥ > 0
and v∥ < 0.
Taking the instantaneous correlation CE∥

with τ = 0 in Fig. 6(b), which corresponds
to the rate of instantaneous energy transfer between the parallel electric field and the ions
as a function of gyrotropic velocity space (v∥, v⊥), we see that the instantaneous energy
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the proton power absorption in a wave period γp/ω peaks near k⊥ρp = 1. The wavevec-
tor region having proton power absorption within one e-folding of the maximum proton
power absorption is highlighted in vertical grey bands in the top two rows of Fig. 1. The
secular energy transfer to the protons from a spectrum of low-frequency, Alfvénic fluctu-
ations should therefore be constrained to a narrow band of parallel velocities (horizontal
blue bands in second row) near the proton thermal velocity in panels (d-f), with a clear
dependence on βp.

4. Gyrokinetic Simulations of Low-Frequency Turbulence

We next detail the turbulence simulations carried out in this study. Gyrokinetics, a
rigorous limit of the Vlasov-Maxwell system of equations, has been shown to optimally
describe the low-frequency, anisotropic turbulent fluctuations typically found in the solar
wind (Frieman & Chen 1982; Howes et al. 2006; Schekochihin et al. 2009). By averag-
ing over the gyromotion of the particles, gyrokinetics reduces the dimensionality of the
kinetic system from six (3D-3V) to five (3D-2V). The gyrokinetic formalism describes
damping via the Landau (n = 0) resonance, (TenBarge & Howes 2013) and resolves the
kinetic microphysics of collisionless magnetic reconnection in the large-guide-field limit
(TenBarge et al. 2014a; Numata & Loureiro 2015). Mechanisms such as cyclotron damp-
ing and stochastic heating due to low-frequency Alfvénic turbulence are not included,
the former due to the exclusion of high-frequency behavior and the latter due to conser-
vation of the magnetic moment enforced by the gyroaveraging procedure. In this paper,
we focus on recovering the signature of Landau damping, leaving the identification of
other damping mechanisms to later work.
We employ the Astrophysical Gyrokinetics simulation code, AstroGK (Numata et al.

2010), which has been used to successfully model plasma physics phenomena in the he-
liosphere over the last decade (Howes et al. 2008, 2011; TenBarge & Howes 2012, 2013;
TenBarge et al. 2013; Numata & Loureiro 2015). AstroGK evolves the gyroaveraged scalar
potential φ(r), parallel vector potential Az(r), and the parallel magnetic field fluctuation
δBz(r), as well as the gyrokinetic distribution function hs(Rs, v⊥, v∥), in a triply-periodic
slab geometry. The gyrokinetic distribution function is related to the total distribution
function fs via

fs(r,v, t) = F0s(v)

(

1−
qsφ(r, t)

T0s

)

+ hs(Rs, v⊥, v∥, t) + δf2s + ... (4.1)

where F0s is the Maxwellian equilibrium distribution, r is the spatial position, Rs the
associated species gyrocenter, and δf2s are second-order corrections in the gyrokinetic
expansion parameter ϵ ∼ k∥/k⊥ which are not retained (Howes et al. 2006). The domain
is a periodic box of size L2

⊥ × L∥, elongated along the straight, uniform mean magnetic
field B0 = B0ẑ. The code employs a pseudospectral method in the x-y (perpendicular)
plane and finite-differencing in the z-direction. The velocity distribution is resolved on
a grid in energy E = v2/2 and pitch angle λ = v2⊥/v

2 space, with the points selected
on a Legendre polynomial basis. A fully conservative, linearized, gyroaveraged collision
operator is employed (Abel et al. 2008; Barnes et al. 2009).
As a technical step, we transform from the gyrokinetic distribution function hs to the

complementary perturbed distribution

gs(Rs, v⊥, v∥) = hs(Rs, v⊥, v∥)−
qsF0s

T0s

〈

φ−
v⊥ ·A⊥

c

〉

Rs

(4.2)

(Schekochihin et al. 2009), where ⟨...⟩ is the gyroaveraging operator. The complemen-
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Figure 1. Linear characteristics of the collisionless, low-frequency Alfvén dispersion relation as
a function of k⊥ρp for βp = 0.3 (left row), 1.0 (center), and 3.0 (right) and reduced mass ratio
mp/me = 32. Panels (a-c) plot the linear damping rate |γ|/ω (red line) and proton |γp|/ω (black)
and electron |γe|/ω (green) power absorption. The resonant proton velocities (black lines) are
plotted in panels (d-f) and the electric field ratio |E∥|/|E⊥| (red lines) is shown in panels (g-i).

turbulent cascade, with no need for artificial dissipation at small scales, which could
corrupt our results.
The collisionless power absorption by species s due to a normal mode in one wave

period is calculated following Stix (1992) §11.8 and Quataert (1998) as

γs
ω

=
E∗ · χa

s
·E

4WEM

, (3.1)

where χa

s
is the anti-Hermitian part of the linear susceptibility tensor for species s eval-

uated at the real component of the normal-mode frequency, E and E∗ are the vector
electric field associated with the normal mode and its complex conjugate, and WEM is
the electromagnetic wave energy. The total damping rate is the sum γ = γp + γe. Values
for γp and γe are shown in panels (a-c) of Fig. 1. As noted in the cited literature, the
calculation of γs breaks down for γ/ω ! 1; the region for which γ/ω ! 1 is highlighted
in red.
While the total damping rate monotonically increases near k⊥ρp = 1.0, the power ab-

sorbed by the protons is a strongly peaked function near that scale. Proton damping will
be dominated by modes with wavevectors near this peak, which have resonant velocities
bounded within a narrow region. This peak arises because Landau damping efficiently
operates when both the resonant velocity vres = ω/k∥ lies in the bulk of the velocity dis-
tribution and there exists a finite parallel electric field. The resonant velocity of an Alfvén
wave normalized by the thermal velocity vtp, plotted in panels (d-f) of Fig. 1, is shown
to be non-dispersive and in resonance with the bulk of the proton velocity distribution
until it reaches length scales of order ρp where the wave transitions to a kinetic Alfvén
wave. For the parameters under consideration, the dispersive modifications increase ω,
moving the wave largely out of resonance with the protons and reducing damping at
small scales. Alfvén waves with k⊥ρp ≪ 1 have weak parallel electric fields, as shown in
panels (g-i), which limit the effectiveness of resonant damping at large scales. Therefore,
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Note that, for periodic or infinitely distant boundaries, the Poynting flux term, the second
term on the left hand side of (2.4), yields zero net change in the energy W .

In the Vlasov-Maxwell system, (2.2) shows clearly that the change in the microscopic
energy of the particles is accomplished by interactions of the particles with the electric
field, where js · E is the (spatially) local rate of change of the energy density of particle
species s. But, as pointed out in the previous description of how to use field-particle
correlations to explore the conversion of turbulent energy into microscopic particle en-
ergy (Howes et al. 2017), this energy transfer between fields and particles includes both
the conservative oscillating energy transfer associated with undamped wave motion and
the secular energy transfer associated with the collisionless damping of the turbulent
fluctuations. Here we specifically define the turbulence as the sum of the fluctuations in
the electromagnetic fields and the fluctuations of the bulk flows of the plasma (Howes
2015). Collisionless interactions between the fields and the particles, governed by the
Lorentz force term (third term on the left-hand side) in (2.1), remove the energy from
the turbulent fluctuations, transferring it into microscopic particle kinetic energy that
is not associated with bulk plasma motions. Diagnosing this net transfer of energy be-
tween fields and particles is the key aim of the field-particle correlation method, using
a time-average over an appropriately chosen correlation interval to eliminate the often
large signal of the oscillating energy transfer, exposing the smaller signal of the secular
energy transfer.

A significant limitation of spacecraft measurements is that information is generally
limited to a single point, or at most a few points, in space. Therefore, the spatial integra-
tion necessary to simplify the energy transfer in the Vlasov equation to the form given
by (2.2) is not possible. To explore the energy transfer between fields and particles at
a single point in space, we define the phase-space energy density for a particle species s
by ws(r,v, t) = msv2fs(r,v, t)/2. Multiplying the Vlasov equation by msv2/2, but not
integrating over space or velocity, we obtain an expression for the rate of change of the
phase-space energy density,

∂ws(r,v, t)

∂t
= −v ·∇ws − qs

v2

2
E ·

∂fs
∂v

−
qs
c

v2

2
(v ×B) ·

∂fs
∂v

. (2.6)

When integrated over velocity space, an integration by parts of the last term on the right-
hand side of (2.6) yields an integrand containing v · (v ×B) = 0, so the magnetic field
cannot accomplish any net change of energy of the particles. In addition, when integrated
over volume, the first term on the right-hand side of (2.6) yields zero net energy change
for either periodic or infinite boundary conditions. Therefore, we focus here on the second
term on the right-hand side of (2.6), the term that determines the effect of the electric
field on the rate of change of phase-space energy density.†

Examining the electric-field term, we can write the form of the field-particle correlation
at a single point r0 for the general Vlasov-Maxwell case, separating the contributions from
the parallel and perpendicular parts of the electric field,

CE∥
(v, t, τ) = C

(

−qs
v2∥
2

∂fs(r0,v, t)

∂v∥
, E∥(r0, t)

)

(2.7)

† As discussed in Howes et al. (2017), it is imperative to use a consistent frame of reference
for the particle distributions and the fields, which in the case of spacecraft measurements will
require a Lorentz transformation of the electric field from the spacecraft to the plasma frame.
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Figure 3. The proton gyrotropic complementary distribution function at a point in the single
KAW simulation, panel (a), and the correlations CE∥(τ = 0) and CE∥(τωA = 5.56), panels (b)
and (c), at a point in time, tωA = 4.7. The resonant velocity of the KAW is shown as a solid
grey line.

the time derivative of the fluctuation energy (blue). We note that their sum (red line) is
zero, indicating good conservation of energy in these simulations. A detailed discussion
of these terms can be found surrounding equation (B19) in Howes et al. (2006).
Both the complementary perturbed distribution gp(rj ; v⊥, v∥) and E∥(rj) are output

at selected fixed points in the spatial domain at a fixed cadence to mimic single-point
observations of the solar wind. With this single-point diagnostic, we calculate the field-
particle correlation CE∥

, representing the first application of this technique to a turbulent
data set.

5. Field-Particle Correlations for a Single KAW

Before applying the field-particle correlations to data from the three turbulence simu-
lations, we first consider a single, nonlinearly evolving kinetic Alfvén wave, similar to the
case presented in Howes (2017). We initialize a single KAW with k⊥ρp = 1 and βp = 1.0,
following the eigenfunction initialization specified in Nielson et al. (2010). The gyrotropic
complementary proton distribution at a single point r0 in the simulation is plotted in
Fig. 3 at time tωA = 4.7. Also plotted are the instantaneous rate of change of the phase-
space energy density, CE∥

(τ = 0), and the time averaged correlation CE∥
(τωA = 5.56).

The correlation interval τωA = 5.56 was selected so that the time average was over one
linear wave period of the initialized KAW, T = 2π/ω0 with ω0 = 1.13ωA. For all three
cases, the gyrotropic structure is clearly organized by the parallel resonant velocity of
the initialized wave, marked with a grey line, with little structure depending on v⊥.†
Such structure was seen in the electrostatic simulations of Landau damping described
in Klein & Howes (2016) and Howes et al. (2017). To focus on this v∥ dependence, we
calculate the reduced field-particle correlation, integrated over v⊥, which for notational
simplicity, we write as CE∥

(v∥) =
∫

dv⊥CE∥
(v∥, v⊥).

To illustrate the effects of the length of the correlation interval, in Fig. 4 we plot
CE∥

(v∥) for two values of v∥ above and below the resonant velocity, 0.8vtp and 1.3vtp, as
well as the correlation integrated over v∥, ∂wp(r0, t)/∂t =

∫

dv∥CE∥
(v∥) where wp(r0, t) is

the ion spatial kinetic energy density at position r0 and time t. We see that for an interval

† While CE∥(τ ̸= 0) is quantitatively similar if we use gp, hp, or fp in its calculation, the
additional terms in hp and fp obscure the structure around v∥ = vres in the distributions
themselves.
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Figure 8. Timestack plots from the turbulent, βp = 1.0 simulation, using the same layout as
presented in Fig. 5.

the gyrotropic plot of gp(v∥, v⊥), there is no significant organization of the structure of
the distribution gp(v∥) about the preferred parallel resonant velocities of the system,
but rather there are large amplitude fluctuations at |v∥| ≪ vtp. The instantaneous rate
of change of the phase-space energy density as a function of v∥, CE∥

(v∥, τ = 0), plot-
ted in Fig. 8(b), is broadly distributed about the system’s preferred resonant velocities.
However, significant oscillatory behavior in time is retained in the instantaneous energy
transfer.
The averaged correlation CE∥

(v∥, τ = 10.4) is plotted in Fig. 8(c), which shows clearly
that the net energy transfer is localized in the range of the resonant parallel velocities.
Again, this velocity-space signature clearly indicates active Landau damping transferring
energy to the ions via the parallel electric field of the turbulent fluctuations. Tracking
the energy transfer rate at point r0, we plot in panel (d) the velocity-space integrated
correlation ∂wp(r0, t)/∂t and in panel (e) the accumulated energy density transfer to the
ions ∆wp(r0, t). These two metrics show that a net ion energization over time occurs at
this position in the simulation.
While the resonant signature is not as clean as that seen in simpler Vlasov-Poisson

systems, or the single KAW simulation presented earlier in this work, we can quantify
the fraction of the energy transferred by resonant particles using the ratio R, extended
to include the positive and negative resonant velocities. We set v1 = ±0.65vres,lower =
0.66vtp and v2 = ±1.35vres,upper = 2.30vtp and plot R in Fig. 8(f). Over 92% of the
net energy transferred between fields and particles is mediated by the particles in this
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Figure 1. Linear characteristics of the collisionless, low-frequency Alfvén dispersion relation as
a function of k⊥ρp for βp = 0.3 (left row), 1.0 (center), and 3.0 (right) and reduced mass ratio
mp/me = 32. Panels (a-c) plot the linear damping rate |γ|/ω (red line) and proton |γp|/ω (black)
and electron |γe|/ω (green) power absorption. The resonant proton velocities (black lines) are
plotted in panels (d-f) and the electric field ratio |E∥|/|E⊥| (red lines) is shown in panels (g-i).

turbulent cascade, with no need for artificial dissipation at small scales, which could
corrupt our results.
The collisionless power absorption by species s due to a normal mode in one wave

period is calculated following Stix (1992) §11.8 and Quataert (1998) as

γs
ω

=
E∗ · χa
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4WEM

, (3.1)

where χa

s
is the anti-Hermitian part of the linear susceptibility tensor for species s eval-

uated at the real component of the normal-mode frequency, E and E∗ are the vector
electric field associated with the normal mode and its complex conjugate, and WEM is
the electromagnetic wave energy. The total damping rate is the sum γ = γp + γe. Values
for γp and γe are shown in panels (a-c) of Fig. 1. As noted in the cited literature, the
calculation of γs breaks down for γ/ω ! 1; the region for which γ/ω ! 1 is highlighted
in red.
While the total damping rate monotonically increases near k⊥ρp = 1.0, the power ab-

sorbed by the protons is a strongly peaked function near that scale. Proton damping will
be dominated by modes with wavevectors near this peak, which have resonant velocities
bounded within a narrow region. This peak arises because Landau damping efficiently
operates when both the resonant velocity vres = ω/k∥ lies in the bulk of the velocity dis-
tribution and there exists a finite parallel electric field. The resonant velocity of an Alfvén
wave normalized by the thermal velocity vtp, plotted in panels (d-f) of Fig. 1, is shown
to be non-dispersive and in resonance with the bulk of the proton velocity distribution
until it reaches length scales of order ρp where the wave transitions to a kinetic Alfvén
wave. For the parameters under consideration, the dispersive modifications increase ω,
moving the wave largely out of resonance with the protons and reducing damping at
small scales. Alfvén waves with k⊥ρp ≪ 1 have weak parallel electric fields, as shown in
panels (g-i), which limit the effectiveness of resonant damping at large scales. Therefore,
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Note that, for periodic or infinitely distant boundaries, the Poynting flux term, the second
term on the left hand side of (2.4), yields zero net change in the energy W .

In the Vlasov-Maxwell system, (2.2) shows clearly that the change in the microscopic
energy of the particles is accomplished by interactions of the particles with the electric
field, where js · E is the (spatially) local rate of change of the energy density of particle
species s. But, as pointed out in the previous description of how to use field-particle
correlations to explore the conversion of turbulent energy into microscopic particle en-
ergy (Howes et al. 2017), this energy transfer between fields and particles includes both
the conservative oscillating energy transfer associated with undamped wave motion and
the secular energy transfer associated with the collisionless damping of the turbulent
fluctuations. Here we specifically define the turbulence as the sum of the fluctuations in
the electromagnetic fields and the fluctuations of the bulk flows of the plasma (Howes
2015). Collisionless interactions between the fields and the particles, governed by the
Lorentz force term (third term on the left-hand side) in (2.1), remove the energy from
the turbulent fluctuations, transferring it into microscopic particle kinetic energy that
is not associated with bulk plasma motions. Diagnosing this net transfer of energy be-
tween fields and particles is the key aim of the field-particle correlation method, using
a time-average over an appropriately chosen correlation interval to eliminate the often
large signal of the oscillating energy transfer, exposing the smaller signal of the secular
energy transfer.

A significant limitation of spacecraft measurements is that information is generally
limited to a single point, or at most a few points, in space. Therefore, the spatial integra-
tion necessary to simplify the energy transfer in the Vlasov equation to the form given
by (2.2) is not possible. To explore the energy transfer between fields and particles at
a single point in space, we define the phase-space energy density for a particle species s
by ws(r,v, t) = msv2fs(r,v, t)/2. Multiplying the Vlasov equation by msv2/2, but not
integrating over space or velocity, we obtain an expression for the rate of change of the
phase-space energy density,
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When integrated over velocity space, an integration by parts of the last term on the right-
hand side of (2.6) yields an integrand containing v · (v ×B) = 0, so the magnetic field
cannot accomplish any net change of energy of the particles. In addition, when integrated
over volume, the first term on the right-hand side of (2.6) yields zero net energy change
for either periodic or infinite boundary conditions. Therefore, we focus here on the second
term on the right-hand side of (2.6), the term that determines the effect of the electric
field on the rate of change of phase-space energy density.†

Examining the electric-field term, we can write the form of the field-particle correlation
at a single point r0 for the general Vlasov-Maxwell case, separating the contributions from
the parallel and perpendicular parts of the electric field,

CE∥
(v, t, τ) = C

(

−qs
v2∥
2

∂fs(r0,v, t)

∂v∥
, E∥(r0, t)

)

(2.7)

† As discussed in Howes et al. (2017), it is imperative to use a consistent frame of reference
for the particle distributions and the fields, which in the case of spacecraft measurements will
require a Lorentz transformation of the electric field from the spacecraft to the plasma frame.
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Figure 3. The proton gyrotropic complementary distribution function at a point in the single
KAW simulation, panel (a), and the correlations CE∥(τ = 0) and CE∥(τωA = 5.56), panels (b)
and (c), at a point in time, tωA = 4.7. The resonant velocity of the KAW is shown as a solid
grey line.

the time derivative of the fluctuation energy (blue). We note that their sum (red line) is
zero, indicating good conservation of energy in these simulations. A detailed discussion
of these terms can be found surrounding equation (B19) in Howes et al. (2006).
Both the complementary perturbed distribution gp(rj ; v⊥, v∥) and E∥(rj) are output

at selected fixed points in the spatial domain at a fixed cadence to mimic single-point
observations of the solar wind. With this single-point diagnostic, we calculate the field-
particle correlation CE∥

, representing the first application of this technique to a turbulent
data set.

5. Field-Particle Correlations for a Single KAW

Before applying the field-particle correlations to data from the three turbulence simu-
lations, we first consider a single, nonlinearly evolving kinetic Alfvén wave, similar to the
case presented in Howes (2017). We initialize a single KAW with k⊥ρp = 1 and βp = 1.0,
following the eigenfunction initialization specified in Nielson et al. (2010). The gyrotropic
complementary proton distribution at a single point r0 in the simulation is plotted in
Fig. 3 at time tωA = 4.7. Also plotted are the instantaneous rate of change of the phase-
space energy density, CE∥

(τ = 0), and the time averaged correlation CE∥
(τωA = 5.56).

The correlation interval τωA = 5.56 was selected so that the time average was over one
linear wave period of the initialized KAW, T = 2π/ω0 with ω0 = 1.13ωA. For all three
cases, the gyrotropic structure is clearly organized by the parallel resonant velocity of
the initialized wave, marked with a grey line, with little structure depending on v⊥.†
Such structure was seen in the electrostatic simulations of Landau damping described
in Klein & Howes (2016) and Howes et al. (2017). To focus on this v∥ dependence, we
calculate the reduced field-particle correlation, integrated over v⊥, which for notational
simplicity, we write as CE∥

(v∥) =
∫

dv⊥CE∥
(v∥, v⊥).

To illustrate the effects of the length of the correlation interval, in Fig. 4 we plot
CE∥

(v∥) for two values of v∥ above and below the resonant velocity, 0.8vtp and 1.3vtp, as
well as the correlation integrated over v∥, ∂wp(r0, t)/∂t =

∫

dv∥CE∥
(v∥) where wp(r0, t) is

the ion spatial kinetic energy density at position r0 and time t. We see that for an interval

† While CE∥(τ ̸= 0) is quantitatively similar if we use gp, hp, or fp in its calculation, the
additional terms in hp and fp obscure the structure around v∥ = vres in the distributions
themselves.
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Hybrid turbulence field particle correlation (Pegasus)

From Arzamasskiy, Kunz, Chandran, Quataert (2018)

• Signature of Landau damping of 
KAWs visible, but …

• Dominantly perpendicular heating 
due to high frequency stochastic 
heating

Q? = qv? ·E?

Qk = qvkEk



Discussion of strengths and weaknesses FPC

• Provides a clear signature of energy exchange for a variety of processes, including 
resonant wave-particle interactions

• Signatures of other processes are yet to be identified but likely exist

• Provides a local, single point, measure of the energy exchange
- Great for spacecraft data
- In some cases, it may neglect the dominant source of energy transfer

• The connection to total energy exchange is simply Js.E

• The FPC is connected to heating but indirectly through phase mixing and collisionality
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Introduction of the PiD diagnostic [Yang et al (2017)]

the conversion between kinetic and internal energy.
Accordingly, one could expect that there might be an analo-
gous role of the pressure tensor in collisionless plasma. In
fact, one expects pressure to be influential in at least several
ways. On the one hand, the pressure term in anisotropic com-
pressible turbulence moderates the competition and balance
between two energy redistributive processes, i.e., return-to-
isotropy29,30 and kinetic-potential (internal) energy equiparti-
tion.31–34 On the other hand, the pressure tensor in kinetic
plasmas plays a very important role in the force balance equa-
tions as well as in the generalized Ohm’s law near neutral
lines.35,36 Here, we show that the global energy exchange
between fluid flow and particles (i.e., kinetic and thermal ener-
gies), derived from the Vlasov equation, is bridged immedi-
ately by the collaboration of pressure tensor and strain stress
(i.e., velocity gradient). This possibly provides a new perspec-
tive on the collisionless dissipation mechanism and on the col-
lisionless plasma cascade, in general. Yang et al. in Ref. 37
(hereafter, paper I) used some global diagnostics, such as vol-
ume averages and contour maps, to introduce some of the pre-
sent concepts and to show the possible importance of pressure
work in generating internal energy. While following this basic
idea, here we explore this novelty in a more comprehensive
and detailed way. For example, instead of looking at global
behaviors, here we emphasize local dynamics and inquire
how the inhomogeneous localized pressure work is correlated
with various coherent structures (e.g., current sheets, vortices,
and straining motions). Furthermore, the scale-decomposition
of energy transfer present in this paper reveals cascade proper-
ties across scales in the kinetic range of plasma turbulence.

Here, we will study a plasma that is considerably simpli-
fied, lacking initial non-Maxwellian and other features that
would be present in real applications such as the solar wind,
where observed features are strongly influenced by expan-
sion, variability, large scale gradients, and propagation from
its sources. Nevertheless, at least some salient features of
intermittency and dissipation are expected to be determined
by local dynamics. It is those features that we reveal through
the study of a more uniform and homogeneous but still tur-
bulent plasma. Indeed, to the extent that nonlinear dissipa-
tion processes driven by turbulence may be common to
many such plasmas, the results obtained in this way would
be more widely applicable in the context of astrophysical
plasmas and plasma physics, in general.

It is important to remark at the onset that the numerical
results shown here employ a single large simulation, based
on a single generic strong turbulence initial value problem,
as will be described in greater detail below. As such, the
results, while they may be typical, or even widely applicable
in some ways, cannot be claimed to be an indicative of
“universality.” In fact, we know already that even magneto-
hydrodynamics (MHD) treatments of plasma behavior con-
tain a sufficient number of variable parameters that
universality cannot be claimed,38 even in idealized condi-
tions, in the same way as in high Reynolds number isotropic
hydrodynamics. Plasmas are of course still more complex
than MHD, and therefore, the caveats concerning universal-
ity based on numerical solutions are even more germane.

On the other hand, the theoretical framework employed
here is based on the full, multispecies Vlasov Maxwell sys-
tem and is very widely applicable in hot rarefied plasmas,
even though, as an ideal model, it lacks collisional effects.
We therefore do not address whether the energy conversion
to random energy is able to produce irreversible heating
through collisions. Theory, computations, and observa-
tions39,40 indicate that departures from this ideal description
concentrate at small scales, on the order of Debye scale. This
suggests, but not conclusively, that the numerical solution at
the scales studied here, separated from the Debye scale, is
represented well as a Vlasov solution.

II. GLOBAL ENERGY CONVERSION

Standard manipulation of the Vlasov equation yields
macroscopic equations for plasma particles of type a in a
collisionless plasma

@tqa þr " ðqauaÞ ¼ 0; (1)

@tðqauaÞ þr " ðqauauaÞ ¼ &r " Pa þ naqaðEþ ua=c' BÞ;
(2)

@tEa þr " ðEauaÞ ¼ &r " ðPa " uaÞ &r " ha þ naqaE " ua:

(3)

Here, qa ¼ mana represents the mass density; ma is the mass
of particles of species a; na is the number density; ua gives
the fluid flow (bulk) velocity; naqa represents the charge den-

sity; Pa ¼ ma
Ð
ðv& uaÞðv& uaÞfaðx;v; tÞdv is the pressure

tensor; Ea ¼
Ð

1
2 mav2fa x; v; tð Þdv is the total (average and

random) kinetic energy; and ha ¼ 1
2 ma

Ð
v& uað Þ2 v& uað Þ

fa x;v; tð Þdv is the heat flux vector.

Decomposing the total energy Ea into average and ran-
dom parts facilitates the understanding of energy converting

processes. On defining the species fluid flow energy as Ef
a ¼ 1

2

qau2
a and the thermal (random) energy as Eth

a ¼ 1
2 maÐ

v& uað Þ2fa x;v; tð Þdv, it is obvious that Ea ¼ Ef
a þ E

th
a .

Computing the inner product of Eq. (2) with ua results in the
fluid flow energy equation

@tEf
a þr " ðE

f
auaÞ ¼ &r " ðPa " uaÞ þ ðPa "rÞ

" ua þ naqaE " ua: (4)

Subtracting Eq. (4) from Eq. (3), we obtain a time evolution
equation for the random kinetic energy

@tEth
a þr " ðE

th
a uaÞ ¼ &ðPa "rÞ " ua &r " ha: (5)

Using the Maxwell curl equations, the equation govern-
ing electromagnetic energy, Em ¼ 1

8p B2 þ E2ð Þ, can be
written as

@tEm þ c

4p
r " E' Bð Þ ¼ &E " j; (6)

where j ¼
P

a ja is the total electric current density, and ja
¼ naqaua is the electric current density of species a. Under
certain boundary conditions, e.g., periodic, integrating Eqs.
(4)–(6) over the whole volume, we can have
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universality cannot be claimed,38 even in idealized condi-
tions, in the same way as in high Reynolds number isotropic
hydrodynamics. Plasmas are of course still more complex
than MHD, and therefore, the caveats concerning universal-
ity based on numerical solutions are even more germane.

On the other hand, the theoretical framework employed
here is based on the full, multispecies Vlasov Maxwell sys-
tem and is very widely applicable in hot rarefied plasmas,
even though, as an ideal model, it lacks collisional effects.
We therefore do not address whether the energy conversion
to random energy is able to produce irreversible heating
through collisions. Theory, computations, and observa-
tions39,40 indicate that departures from this ideal description
concentrate at small scales, on the order of Debye scale. This
suggests, but not conclusively, that the numerical solution at
the scales studied here, separated from the Debye scale, is
represented well as a Vlasov solution.

II. GLOBAL ENERGY CONVERSION

Standard manipulation of the Vlasov equation yields
macroscopic equations for plasma particles of type a in a
collisionless plasma

@tqa þr " ðqauaÞ ¼ 0; (1)

@tðqauaÞ þr " ðqauauaÞ ¼ &r " Pa þ naqaðEþ ua=c' BÞ;
(2)

@tEa þr " ðEauaÞ ¼ &r " ðPa " uaÞ &r " ha þ naqaE " ua:

(3)

Here, qa ¼ mana represents the mass density; ma is the mass
of particles of species a; na is the number density; ua gives
the fluid flow (bulk) velocity; naqa represents the charge den-

sity; Pa ¼ ma
Ð
ðv& uaÞðv& uaÞfaðx;v; tÞdv is the pressure

tensor; Ea ¼
Ð

1
2 mav2fa x; v; tð Þdv is the total (average and

random) kinetic energy; and ha ¼ 1
2 ma

Ð
v& uað Þ2 v& uað Þ

fa x;v; tð Þdv is the heat flux vector.

Decomposing the total energy Ea into average and ran-
dom parts facilitates the understanding of energy converting

processes. On defining the species fluid flow energy as Ef
a ¼ 1

2

qau2
a and the thermal (random) energy as Eth

a ¼ 1
2 maÐ

v& uað Þ2fa x;v; tð Þdv, it is obvious that Ea ¼ Ef
a þ E

th
a .

Computing the inner product of Eq. (2) with ua results in the
fluid flow energy equation

@tEf
a þr " ðE

f
auaÞ ¼ &r " ðPa " uaÞ þ ðPa "rÞ

" ua þ naqaE " ua: (4)

Subtracting Eq. (4) from Eq. (3), we obtain a time evolution
equation for the random kinetic energy

@tEth
a þr " ðE

th
a uaÞ ¼ &ðPa "rÞ " ua &r " ha: (5)

Using the Maxwell curl equations, the equation govern-
ing electromagnetic energy, Em ¼ 1

8p B2 þ E2ð Þ, can be
written as

@tEm þ c

4p
r " E' Bð Þ ¼ &E " j; (6)

where j ¼
P

a ja is the total electric current density, and ja
¼ naqaua is the electric current density of species a. Under
certain boundary conditions, e.g., periodic, integrating Eqs.
(4)–(6) over the whole volume, we can have
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Accordingly, one could expect that there might be an analo-
gous role of the pressure tensor in collisionless plasma. In
fact, one expects pressure to be influential in at least several
ways. On the one hand, the pressure term in anisotropic com-
pressible turbulence moderates the competition and balance
between two energy redistributive processes, i.e., return-to-
isotropy29,30 and kinetic-potential (internal) energy equiparti-
tion.31–34 On the other hand, the pressure tensor in kinetic
plasmas plays a very important role in the force balance equa-
tions as well as in the generalized Ohm’s law near neutral
lines.35,36 Here, we show that the global energy exchange
between fluid flow and particles (i.e., kinetic and thermal ener-
gies), derived from the Vlasov equation, is bridged immedi-
ately by the collaboration of pressure tensor and strain stress
(i.e., velocity gradient). This possibly provides a new perspec-
tive on the collisionless dissipation mechanism and on the col-
lisionless plasma cascade, in general. Yang et al. in Ref. 37
(hereafter, paper I) used some global diagnostics, such as vol-
ume averages and contour maps, to introduce some of the pre-
sent concepts and to show the possible importance of pressure
work in generating internal energy. While following this basic
idea, here we explore this novelty in a more comprehensive
and detailed way. For example, instead of looking at global
behaviors, here we emphasize local dynamics and inquire
how the inhomogeneous localized pressure work is correlated
with various coherent structures (e.g., current sheets, vortices,
and straining motions). Furthermore, the scale-decomposition
of energy transfer present in this paper reveals cascade proper-
ties across scales in the kinetic range of plasma turbulence.

Here, we will study a plasma that is considerably simpli-
fied, lacking initial non-Maxwellian and other features that
would be present in real applications such as the solar wind,
where observed features are strongly influenced by expan-
sion, variability, large scale gradients, and propagation from
its sources. Nevertheless, at least some salient features of
intermittency and dissipation are expected to be determined
by local dynamics. It is those features that we reveal through
the study of a more uniform and homogeneous but still tur-
bulent plasma. Indeed, to the extent that nonlinear dissipa-
tion processes driven by turbulence may be common to
many such plasmas, the results obtained in this way would
be more widely applicable in the context of astrophysical
plasmas and plasma physics, in general.

It is important to remark at the onset that the numerical
results shown here employ a single large simulation, based
on a single generic strong turbulence initial value problem,
as will be described in greater detail below. As such, the
results, while they may be typical, or even widely applicable
in some ways, cannot be claimed to be an indicative of
“universality.” In fact, we know already that even magneto-
hydrodynamics (MHD) treatments of plasma behavior con-
tain a sufficient number of variable parameters that
universality cannot be claimed,38 even in idealized condi-
tions, in the same way as in high Reynolds number isotropic
hydrodynamics. Plasmas are of course still more complex
than MHD, and therefore, the caveats concerning universal-
ity based on numerical solutions are even more germane.

On the other hand, the theoretical framework employed
here is based on the full, multispecies Vlasov Maxwell sys-
tem and is very widely applicable in hot rarefied plasmas,
even though, as an ideal model, it lacks collisional effects.
We therefore do not address whether the energy conversion
to random energy is able to produce irreversible heating
through collisions. Theory, computations, and observa-
tions39,40 indicate that departures from this ideal description
concentrate at small scales, on the order of Debye scale. This
suggests, but not conclusively, that the numerical solution at
the scales studied here, separated from the Debye scale, is
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Beginning with the standard extended MHD equations

Re-arrange to construct the:

Flow energy:

Rest-frame (thermal) energy:

Electromagnetic energy:



Introduction of the PiD diagnostic [Yang et al (2017)]

@thEf
ai ¼ hðPa #rÞ # uai þ hnaqaE # uai; (7)

@thEth
a i ¼ &hðPa #rÞ # uai; (8)

@thEmi ¼ &hE # ji; (9)

where h# # #i denotes a space average over the entire volume.
Note that the above derivation is elementary conse-

quence of the Vlasov equation, which encompasses only the
first three moments of distribution function. This set of trans-
port equations is not complete in the sense that no assump-
tion concerning the heat flux ha is made for closure. In fact,
the neglect of the heat flux in our analysis may in some cir-
cumstances cause the results to be far from completion. For
example, some linear instabilities, including streaming insta-
bilities, might require including heat flux.41 In this paper, we
will not consider any effects associated with transport terms
[i.e., the divergence terms in Eqs. (4)–(6)]. Instead, we
examine local or filtered properties of the remaining terms,
e.g., ðPa #rÞ # ua, which is independent of any closure.

Figure 1 illustrates the energy conversions as suggested
by Eqs. (7)–(9). One can see that for the collisionless
case derived from the Vlasov equation, the pressure work,
&hðPa #rÞ # uai, is the only term converting fluid flow energy
into thermal (random) energy, while the term, hja # Ei, repre-
sents the conversion between fluid flow and electromagnetic
energies. The pressure work seems to be a more straightfor-
ward measure of heating rate when compared with electro-
magnetic work.27,40 At present, we cannot rule out the
possibly strong correlation between the work done by pressure
and work done by the electric field. For example, for a gener-
alized Ohm’s law or the electron momentum equation, in the
limit of massless electrons in collisionless plasma, we find
that hje # Ei ¼ &hðPe #rÞ # uei.

Notwithstanding that the pressure work is a general
property in various fluid systems, seldom have studies inves-
tigated the role of pressure in modifying the thermal (ran-
dom) energy in a turbulent kinetic plasma (however, see,
e.g., Refs. 42–44). In the realm of observations, this is more
or less due to the intractability of calculating velocity gradi-
ent from single spacecraft datasets and until recently, a lack
of high cadence determination of the pressure tensor. These
complications have led most observational studies of solar
wind turbulence to rely on high cadence magnetic field data,
which is generally much more accessible. Even in simulation
studies, accurate determination of the pressure tensor is

challenging, requiring either large numbers of particles in
PIC codes or the use of computationally demanding Eulerian
Vlasov simulations. Here, we will use numerical simulations
to explore the role of pressure tensor in heating of kinetic
plasma in detail.

III. SIMULATION DETAILS

The fully kinetic particle-in-cell (PIC) simulation
employed here spans from macroscopic fluid scales to
kinetic scales, which is suited for studies of energy transfer
and dissipation. The simulation was performed using P3D
code45 in 2.5D geometry (three components of dependent
field vectors and a two-dimensional spatial grid). The num-
ber density is normalized to the reference number density nr

(¼1 in this simulation), mass to proton mass mi (¼1 in this
simulation), charge to proton charge qi, and magnetic field to
Br (¼1 in this run). Length is normalized to the ion inertial
length di, time to the ion cyclotron time X&1

i , velocity to the
reference Alfv!en speed vAr ¼ Br=ð4pminrÞ1=2, and tempera-
ture to Tr ¼ miv2

Ar . Parameters of the PIC simulation are
listed in Table I. The speed of light in the simulation is
c¼ 30 and the ratio xpe=xce ¼ 1:2. (In the corona and solar
wind, this ratio lies in the range of 10 to> 100.) It is well
known that small mass ratio and low speed of light might
introduce some unrealistic effects. However, these are neces-
sary compromises to attain large PIC systems with reason-
ably large particle number per cell that also run for long
dynamical times. An important effect here is that the proton
and electron inertial scales lie closer together than they
would in nature. The simulation is conducted in periodic
boundary conditions in both directions and started with uni-
form density n0 ¼ 1:0 and temperature of ions and electrons
T0 ¼ 1:25. A strong out-of-plane guide magnetic field B0 ¼ 5:0
is imposed. The initial v and b fluctuations are transverse to
B0 (“Alfv!en mode”) with unit total fluctuation energy and

FIG. 1. Illustration of the available
routes for global energy conversion.
The point-wise values of &ðPa #rÞ # ua

and ja # E are not sign-definite.
Therefore, there are two possible direc-
tions of energy conversion. h# # #i
denotes the space average over the
entire volume.

TABLE I. Simulation parameters: box size L, grid points N2, mass ratio

mi=me, speed of light c, proton beta bi, electron beta be, out of plane uniform
magnetic field B0, the number of particles of each species per grid ppg , and

correlation scale kc.

Code L N2 mi=me c b i be B0 ppg kc

P3D (Ref. 45) 102:4di 81922 25 30 0.1 0.1 5.0 300 16:8di
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the conversion between kinetic and internal energy.
Accordingly, one could expect that there might be an analo-
gous role of the pressure tensor in collisionless plasma. In
fact, one expects pressure to be influential in at least several
ways. On the one hand, the pressure term in anisotropic com-
pressible turbulence moderates the competition and balance
between two energy redistributive processes, i.e., return-to-
isotropy29,30 and kinetic-potential (internal) energy equiparti-
tion.31–34 On the other hand, the pressure tensor in kinetic
plasmas plays a very important role in the force balance equa-
tions as well as in the generalized Ohm’s law near neutral
lines.35,36 Here, we show that the global energy exchange
between fluid flow and particles (i.e., kinetic and thermal ener-
gies), derived from the Vlasov equation, is bridged immedi-
ately by the collaboration of pressure tensor and strain stress
(i.e., velocity gradient). This possibly provides a new perspec-
tive on the collisionless dissipation mechanism and on the col-
lisionless plasma cascade, in general. Yang et al. in Ref. 37
(hereafter, paper I) used some global diagnostics, such as vol-
ume averages and contour maps, to introduce some of the pre-
sent concepts and to show the possible importance of pressure
work in generating internal energy. While following this basic
idea, here we explore this novelty in a more comprehensive
and detailed way. For example, instead of looking at global
behaviors, here we emphasize local dynamics and inquire
how the inhomogeneous localized pressure work is correlated
with various coherent structures (e.g., current sheets, vortices,
and straining motions). Furthermore, the scale-decomposition
of energy transfer present in this paper reveals cascade proper-
ties across scales in the kinetic range of plasma turbulence.

Here, we will study a plasma that is considerably simpli-
fied, lacking initial non-Maxwellian and other features that
would be present in real applications such as the solar wind,
where observed features are strongly influenced by expan-
sion, variability, large scale gradients, and propagation from
its sources. Nevertheless, at least some salient features of
intermittency and dissipation are expected to be determined
by local dynamics. It is those features that we reveal through
the study of a more uniform and homogeneous but still tur-
bulent plasma. Indeed, to the extent that nonlinear dissipa-
tion processes driven by turbulence may be common to
many such plasmas, the results obtained in this way would
be more widely applicable in the context of astrophysical
plasmas and plasma physics, in general.

It is important to remark at the onset that the numerical
results shown here employ a single large simulation, based
on a single generic strong turbulence initial value problem,
as will be described in greater detail below. As such, the
results, while they may be typical, or even widely applicable
in some ways, cannot be claimed to be an indicative of
“universality.” In fact, we know already that even magneto-
hydrodynamics (MHD) treatments of plasma behavior con-
tain a sufficient number of variable parameters that
universality cannot be claimed,38 even in idealized condi-
tions, in the same way as in high Reynolds number isotropic
hydrodynamics. Plasmas are of course still more complex
than MHD, and therefore, the caveats concerning universal-
ity based on numerical solutions are even more germane.

On the other hand, the theoretical framework employed
here is based on the full, multispecies Vlasov Maxwell sys-
tem and is very widely applicable in hot rarefied plasmas,
even though, as an ideal model, it lacks collisional effects.
We therefore do not address whether the energy conversion
to random energy is able to produce irreversible heating
through collisions. Theory, computations, and observa-
tions39,40 indicate that departures from this ideal description
concentrate at small scales, on the order of Debye scale. This
suggests, but not conclusively, that the numerical solution at
the scales studied here, separated from the Debye scale, is
represented well as a Vlasov solution.
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Standard manipulation of the Vlasov equation yields
macroscopic equations for plasma particles of type a in a
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a and the thermal (random) energy as Eth

a ¼ 1
2 maÐ

v& uað Þ2fa x;v; tð Þdv, it is obvious that Ea ¼ Ef
a þ E

th
a .

Computing the inner product of Eq. (2) with ua results in the
fluid flow energy equation

@tEf
a þr " ðE

f
auaÞ ¼ &r " ðPa " uaÞ þ ðPa "rÞ

" ua þ naqaE " ua: (4)
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where observed features are strongly influenced by expan-
sion, variability, large scale gradients, and propagation from
its sources. Nevertheless, at least some salient features of
intermittency and dissipation are expected to be determined
by local dynamics. It is those features that we reveal through
the study of a more uniform and homogeneous but still tur-
bulent plasma. Indeed, to the extent that nonlinear dissipa-
tion processes driven by turbulence may be common to
many such plasmas, the results obtained in this way would
be more widely applicable in the context of astrophysical
plasmas and plasma physics, in general.

It is important to remark at the onset that the numerical
results shown here employ a single large simulation, based
on a single generic strong turbulence initial value problem,
as will be described in greater detail below. As such, the
results, while they may be typical, or even widely applicable
in some ways, cannot be claimed to be an indicative of
“universality.” In fact, we know already that even magneto-
hydrodynamics (MHD) treatments of plasma behavior con-
tain a sufficient number of variable parameters that
universality cannot be claimed,38 even in idealized condi-
tions, in the same way as in high Reynolds number isotropic
hydrodynamics. Plasmas are of course still more complex
than MHD, and therefore, the caveats concerning universal-
ity based on numerical solutions are even more germane.

On the other hand, the theoretical framework employed
here is based on the full, multispecies Vlasov Maxwell sys-
tem and is very widely applicable in hot rarefied plasmas,
even though, as an ideal model, it lacks collisional effects.
We therefore do not address whether the energy conversion
to random energy is able to produce irreversible heating
through collisions. Theory, computations, and observa-
tions39,40 indicate that departures from this ideal description
concentrate at small scales, on the order of Debye scale. This
suggests, but not conclusively, that the numerical solution at
the scales studied here, separated from the Debye scale, is
represented well as a Vlasov solution.

II. GLOBAL ENERGY CONVERSION

Standard manipulation of the Vlasov equation yields
macroscopic equations for plasma particles of type a in a
collisionless plasma

@tqa þr " ðqauaÞ ¼ 0; (1)

@tðqauaÞ þr " ðqauauaÞ ¼ &r " Pa þ naqaðEþ ua=c' BÞ;
(2)

@tEa þr " ðEauaÞ ¼ &r " ðPa " uaÞ &r " ha þ naqaE " ua:

(3)

Here, qa ¼ mana represents the mass density; ma is the mass
of particles of species a; na is the number density; ua gives
the fluid flow (bulk) velocity; naqa represents the charge den-

sity; Pa ¼ ma
Ð
ðv& uaÞðv& uaÞfaðx;v; tÞdv is the pressure

tensor; Ea ¼
Ð

1
2 mav2fa x; v; tð Þdv is the total (average and

random) kinetic energy; and ha ¼ 1
2 ma

Ð
v& uað Þ2 v& uað Þ

fa x;v; tð Þdv is the heat flux vector.

Decomposing the total energy Ea into average and ran-
dom parts facilitates the understanding of energy converting

processes. On defining the species fluid flow energy as Ef
a ¼ 1

2

qau2
a and the thermal (random) energy as Eth

a ¼ 1
2 maÐ

v& uað Þ2fa x;v; tð Þdv, it is obvious that Ea ¼ Ef
a þ E

th
a .

Computing the inner product of Eq. (2) with ua results in the
fluid flow energy equation

@tEf
a þr " ðE

f
auaÞ ¼ &r " ðPa " uaÞ þ ðPa "rÞ

" ua þ naqaE " ua: (4)

Subtracting Eq. (4) from Eq. (3), we obtain a time evolution
equation for the random kinetic energy

@tEth
a þr " ðE

th
a uaÞ ¼ &ðPa "rÞ " ua &r " ha: (5)

Using the Maxwell curl equations, the equation govern-
ing electromagnetic energy, Em ¼ 1

8p B2 þ E2ð Þ, can be
written as

@tEm þ c

4p
r " E' Bð Þ ¼ &E " j; (6)

where j ¼
P

a ja is the total electric current density, and ja
¼ naqaua is the electric current density of species a. Under
certain boundary conditions, e.g., periodic, integrating Eqs.
(4)–(6) over the whole volume, we can have
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Integrating 
over space



Introduction of the PiD diagnostic [Yang et al (2017)]

@thEf
ai ¼ hðPa #rÞ # uai þ hnaqaE # uai; (7)

@thEth
a i ¼ &hðPa #rÞ # uai; (8)

@thEmi ¼ &hE # ji; (9)

where h# # #i denotes a space average over the entire volume.
Note that the above derivation is elementary conse-

quence of the Vlasov equation, which encompasses only the
first three moments of distribution function. This set of trans-
port equations is not complete in the sense that no assump-
tion concerning the heat flux ha is made for closure. In fact,
the neglect of the heat flux in our analysis may in some cir-
cumstances cause the results to be far from completion. For
example, some linear instabilities, including streaming insta-
bilities, might require including heat flux.41 In this paper, we
will not consider any effects associated with transport terms
[i.e., the divergence terms in Eqs. (4)–(6)]. Instead, we
examine local or filtered properties of the remaining terms,
e.g., ðPa #rÞ # ua, which is independent of any closure.

Figure 1 illustrates the energy conversions as suggested
by Eqs. (7)–(9). One can see that for the collisionless
case derived from the Vlasov equation, the pressure work,
&hðPa #rÞ # uai, is the only term converting fluid flow energy
into thermal (random) energy, while the term, hja # Ei, repre-
sents the conversion between fluid flow and electromagnetic
energies. The pressure work seems to be a more straightfor-
ward measure of heating rate when compared with electro-
magnetic work.27,40 At present, we cannot rule out the
possibly strong correlation between the work done by pressure
and work done by the electric field. For example, for a gener-
alized Ohm’s law or the electron momentum equation, in the
limit of massless electrons in collisionless plasma, we find
that hje # Ei ¼ &hðPe #rÞ # uei.

Notwithstanding that the pressure work is a general
property in various fluid systems, seldom have studies inves-
tigated the role of pressure in modifying the thermal (ran-
dom) energy in a turbulent kinetic plasma (however, see,
e.g., Refs. 42–44). In the realm of observations, this is more
or less due to the intractability of calculating velocity gradi-
ent from single spacecraft datasets and until recently, a lack
of high cadence determination of the pressure tensor. These
complications have led most observational studies of solar
wind turbulence to rely on high cadence magnetic field data,
which is generally much more accessible. Even in simulation
studies, accurate determination of the pressure tensor is

challenging, requiring either large numbers of particles in
PIC codes or the use of computationally demanding Eulerian
Vlasov simulations. Here, we will use numerical simulations
to explore the role of pressure tensor in heating of kinetic
plasma in detail.

III. SIMULATION DETAILS

The fully kinetic particle-in-cell (PIC) simulation
employed here spans from macroscopic fluid scales to
kinetic scales, which is suited for studies of energy transfer
and dissipation. The simulation was performed using P3D
code45 in 2.5D geometry (three components of dependent
field vectors and a two-dimensional spatial grid). The num-
ber density is normalized to the reference number density nr

(¼1 in this simulation), mass to proton mass mi (¼1 in this
simulation), charge to proton charge qi, and magnetic field to
Br (¼1 in this run). Length is normalized to the ion inertial
length di, time to the ion cyclotron time X&1

i , velocity to the
reference Alfv!en speed vAr ¼ Br=ð4pminrÞ1=2, and tempera-
ture to Tr ¼ miv2

Ar . Parameters of the PIC simulation are
listed in Table I. The speed of light in the simulation is
c¼ 30 and the ratio xpe=xce ¼ 1:2. (In the corona and solar
wind, this ratio lies in the range of 10 to> 100.) It is well
known that small mass ratio and low speed of light might
introduce some unrealistic effects. However, these are neces-
sary compromises to attain large PIC systems with reason-
ably large particle number per cell that also run for long
dynamical times. An important effect here is that the proton
and electron inertial scales lie closer together than they
would in nature. The simulation is conducted in periodic
boundary conditions in both directions and started with uni-
form density n0 ¼ 1:0 and temperature of ions and electrons
T0 ¼ 1:25. A strong out-of-plane guide magnetic field B0 ¼ 5:0
is imposed. The initial v and b fluctuations are transverse to
B0 (“Alfv!en mode”) with unit total fluctuation energy and

FIG. 1. Illustration of the available
routes for global energy conversion.
The point-wise values of &ðPa #rÞ # ua

and ja # E are not sign-definite.
Therefore, there are two possible direc-
tions of energy conversion. h# # #i
denotes the space average over the
entire volume.

TABLE I. Simulation parameters: box size L, grid points N2, mass ratio

mi=me, speed of light c, proton beta bi, electron beta be, out of plane uniform
magnetic field B0, the number of particles of each species per grid ppg , and

correlation scale kc.

Code L N2 mi=me c b i be B0 ppg kc

P3D (Ref. 45) 102:4di 81922 25 30 0.1 0.1 5.0 300 16:8di
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the conversion between kinetic and internal energy.
Accordingly, one could expect that there might be an analo-
gous role of the pressure tensor in collisionless plasma. In
fact, one expects pressure to be influential in at least several
ways. On the one hand, the pressure term in anisotropic com-
pressible turbulence moderates the competition and balance
between two energy redistributive processes, i.e., return-to-
isotropy29,30 and kinetic-potential (internal) energy equiparti-
tion.31–34 On the other hand, the pressure tensor in kinetic
plasmas plays a very important role in the force balance equa-
tions as well as in the generalized Ohm’s law near neutral
lines.35,36 Here, we show that the global energy exchange
between fluid flow and particles (i.e., kinetic and thermal ener-
gies), derived from the Vlasov equation, is bridged immedi-
ately by the collaboration of pressure tensor and strain stress
(i.e., velocity gradient). This possibly provides a new perspec-
tive on the collisionless dissipation mechanism and on the col-
lisionless plasma cascade, in general. Yang et al. in Ref. 37
(hereafter, paper I) used some global diagnostics, such as vol-
ume averages and contour maps, to introduce some of the pre-
sent concepts and to show the possible importance of pressure
work in generating internal energy. While following this basic
idea, here we explore this novelty in a more comprehensive
and detailed way. For example, instead of looking at global
behaviors, here we emphasize local dynamics and inquire
how the inhomogeneous localized pressure work is correlated
with various coherent structures (e.g., current sheets, vortices,
and straining motions). Furthermore, the scale-decomposition
of energy transfer present in this paper reveals cascade proper-
ties across scales in the kinetic range of plasma turbulence.

Here, we will study a plasma that is considerably simpli-
fied, lacking initial non-Maxwellian and other features that
would be present in real applications such as the solar wind,
where observed features are strongly influenced by expan-
sion, variability, large scale gradients, and propagation from
its sources. Nevertheless, at least some salient features of
intermittency and dissipation are expected to be determined
by local dynamics. It is those features that we reveal through
the study of a more uniform and homogeneous but still tur-
bulent plasma. Indeed, to the extent that nonlinear dissipa-
tion processes driven by turbulence may be common to
many such plasmas, the results obtained in this way would
be more widely applicable in the context of astrophysical
plasmas and plasma physics, in general.

It is important to remark at the onset that the numerical
results shown here employ a single large simulation, based
on a single generic strong turbulence initial value problem,
as will be described in greater detail below. As such, the
results, while they may be typical, or even widely applicable
in some ways, cannot be claimed to be an indicative of
“universality.” In fact, we know already that even magneto-
hydrodynamics (MHD) treatments of plasma behavior con-
tain a sufficient number of variable parameters that
universality cannot be claimed,38 even in idealized condi-
tions, in the same way as in high Reynolds number isotropic
hydrodynamics. Plasmas are of course still more complex
than MHD, and therefore, the caveats concerning universal-
ity based on numerical solutions are even more germane.

On the other hand, the theoretical framework employed
here is based on the full, multispecies Vlasov Maxwell sys-
tem and is very widely applicable in hot rarefied plasmas,
even though, as an ideal model, it lacks collisional effects.
We therefore do not address whether the energy conversion
to random energy is able to produce irreversible heating
through collisions. Theory, computations, and observa-
tions39,40 indicate that departures from this ideal description
concentrate at small scales, on the order of Debye scale. This
suggests, but not conclusively, that the numerical solution at
the scales studied here, separated from the Debye scale, is
represented well as a Vlasov solution.

II. GLOBAL ENERGY CONVERSION

Standard manipulation of the Vlasov equation yields
macroscopic equations for plasma particles of type a in a
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many such plasmas, the results obtained in this way would
be more widely applicable in the context of astrophysical
plasmas and plasma physics, in general.

It is important to remark at the onset that the numerical
results shown here employ a single large simulation, based
on a single generic strong turbulence initial value problem,
as will be described in greater detail below. As such, the
results, while they may be typical, or even widely applicable
in some ways, cannot be claimed to be an indicative of
“universality.” In fact, we know already that even magneto-
hydrodynamics (MHD) treatments of plasma behavior con-
tain a sufficient number of variable parameters that
universality cannot be claimed,38 even in idealized condi-
tions, in the same way as in high Reynolds number isotropic
hydrodynamics. Plasmas are of course still more complex
than MHD, and therefore, the caveats concerning universal-
ity based on numerical solutions are even more germane.

On the other hand, the theoretical framework employed
here is based on the full, multispecies Vlasov Maxwell sys-
tem and is very widely applicable in hot rarefied plasmas,
even though, as an ideal model, it lacks collisional effects.
We therefore do not address whether the energy conversion
to random energy is able to produce irreversible heating
through collisions. Theory, computations, and observa-
tions39,40 indicate that departures from this ideal description
concentrate at small scales, on the order of Debye scale. This
suggests, but not conclusively, that the numerical solution at
the scales studied here, separated from the Debye scale, is
represented well as a Vlasov solution.

II. GLOBAL ENERGY CONVERSION

Standard manipulation of the Vlasov equation yields
macroscopic equations for plasma particles of type a in a
collisionless plasma

@tqa þr " ðqauaÞ ¼ 0; (1)

@tðqauaÞ þr " ðqauauaÞ ¼ &r " Pa þ naqaðEþ ua=c' BÞ;
(2)

@tEa þr " ðEauaÞ ¼ &r " ðPa " uaÞ &r " ha þ naqaE " ua:

(3)

Here, qa ¼ mana represents the mass density; ma is the mass
of particles of species a; na is the number density; ua gives
the fluid flow (bulk) velocity; naqa represents the charge den-

sity; Pa ¼ ma
Ð
ðv& uaÞðv& uaÞfaðx;v; tÞdv is the pressure

tensor; Ea ¼
Ð

1
2 mav2fa x; v; tð Þdv is the total (average and

random) kinetic energy; and ha ¼ 1
2 ma

Ð
v& uað Þ2 v& uað Þ

fa x;v; tð Þdv is the heat flux vector.

Decomposing the total energy Ea into average and ran-
dom parts facilitates the understanding of energy converting

processes. On defining the species fluid flow energy as Ef
a ¼ 1

2

qau2
a and the thermal (random) energy as Eth

a ¼ 1
2 maÐ

v& uað Þ2fa x;v; tð Þdv, it is obvious that Ea ¼ Ef
a þ E

th
a .

Computing the inner product of Eq. (2) with ua results in the
fluid flow energy equation

@tEf
a þr " ðE

f
auaÞ ¼ &r " ðPa " uaÞ þ ðPa "rÞ

" ua þ naqaE " ua: (4)

Subtracting Eq. (4) from Eq. (3), we obtain a time evolution
equation for the random kinetic energy

@tEth
a þr " ðE

th
a uaÞ ¼ &ðPa "rÞ " ua &r " ha: (5)

Using the Maxwell curl equations, the equation govern-
ing electromagnetic energy, Em ¼ 1

8p B2 þ E2ð Þ, can be
written as

@tEm þ c

4p
r " E' Bð Þ ¼ &E " j; (6)

where j ¼
P

a ja is the total electric current density, and ja
¼ naqaua is the electric current density of species a. Under
certain boundary conditions, e.g., periodic, integrating Eqs.
(4)–(6) over the whole volume, we can have
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a þ E

th
a .

Computing the inner product of Eq. (2) with ua results in the
fluid flow energy equation

@tEf
a þr " ðE

f
auaÞ ¼ &r " ðPa " uaÞ þ ðPa "rÞ

" ua þ naqaE " ua: (4)

Subtracting Eq. (4) from Eq. (3), we obtain a time evolution
equation for the random kinetic energy

@tEth
a þr " ðE

th
a uaÞ ¼ &ðPa "rÞ " ua &r " ha: (5)

Using the Maxwell curl equations, the equation govern-
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written as
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Integrating 
over space



Revisiting the Langmuir wave



Langmuir wave result

@thEf
ai ¼ hðPa #rÞ # uai þ hnaqaE # uai; (7)

@thEth
a i ¼ &hðPa #rÞ # uai; (8)

@thEmi ¼ &hE # ji; (9)

where h# # #i denotes a space average over the entire volume.
Note that the above derivation is elementary conse-

quence of the Vlasov equation, which encompasses only the
first three moments of distribution function. This set of trans-
port equations is not complete in the sense that no assump-
tion concerning the heat flux ha is made for closure. In fact,
the neglect of the heat flux in our analysis may in some cir-
cumstances cause the results to be far from completion. For
example, some linear instabilities, including streaming insta-
bilities, might require including heat flux.41 In this paper, we
will not consider any effects associated with transport terms
[i.e., the divergence terms in Eqs. (4)–(6)]. Instead, we
examine local or filtered properties of the remaining terms,
e.g., ðPa #rÞ # ua, which is independent of any closure.

Figure 1 illustrates the energy conversions as suggested
by Eqs. (7)–(9). One can see that for the collisionless
case derived from the Vlasov equation, the pressure work,
&hðPa #rÞ # uai, is the only term converting fluid flow energy
into thermal (random) energy, while the term, hja # Ei, repre-
sents the conversion between fluid flow and electromagnetic
energies. The pressure work seems to be a more straightfor-
ward measure of heating rate when compared with electro-
magnetic work.27,40 At present, we cannot rule out the
possibly strong correlation between the work done by pressure
and work done by the electric field. For example, for a gener-
alized Ohm’s law or the electron momentum equation, in the
limit of massless electrons in collisionless plasma, we find
that hje # Ei ¼ &hðPe #rÞ # uei.

Notwithstanding that the pressure work is a general
property in various fluid systems, seldom have studies inves-
tigated the role of pressure in modifying the thermal (ran-
dom) energy in a turbulent kinetic plasma (however, see,
e.g., Refs. 42–44). In the realm of observations, this is more
or less due to the intractability of calculating velocity gradi-
ent from single spacecraft datasets and until recently, a lack
of high cadence determination of the pressure tensor. These
complications have led most observational studies of solar
wind turbulence to rely on high cadence magnetic field data,
which is generally much more accessible. Even in simulation
studies, accurate determination of the pressure tensor is

challenging, requiring either large numbers of particles in
PIC codes or the use of computationally demanding Eulerian
Vlasov simulations. Here, we will use numerical simulations
to explore the role of pressure tensor in heating of kinetic
plasma in detail.

III. SIMULATION DETAILS

The fully kinetic particle-in-cell (PIC) simulation
employed here spans from macroscopic fluid scales to
kinetic scales, which is suited for studies of energy transfer
and dissipation. The simulation was performed using P3D
code45 in 2.5D geometry (three components of dependent
field vectors and a two-dimensional spatial grid). The num-
ber density is normalized to the reference number density nr

(¼1 in this simulation), mass to proton mass mi (¼1 in this
simulation), charge to proton charge qi, and magnetic field to
Br (¼1 in this run). Length is normalized to the ion inertial
length di, time to the ion cyclotron time X&1

i , velocity to the
reference Alfv!en speed vAr ¼ Br=ð4pminrÞ1=2, and tempera-
ture to Tr ¼ miv2

Ar . Parameters of the PIC simulation are
listed in Table I. The speed of light in the simulation is
c¼ 30 and the ratio xpe=xce ¼ 1:2. (In the corona and solar
wind, this ratio lies in the range of 10 to> 100.) It is well
known that small mass ratio and low speed of light might
introduce some unrealistic effects. However, these are neces-
sary compromises to attain large PIC systems with reason-
ably large particle number per cell that also run for long
dynamical times. An important effect here is that the proton
and electron inertial scales lie closer together than they
would in nature. The simulation is conducted in periodic
boundary conditions in both directions and started with uni-
form density n0 ¼ 1:0 and temperature of ions and electrons
T0 ¼ 1:25. A strong out-of-plane guide magnetic field B0 ¼ 5:0
is imposed. The initial v and b fluctuations are transverse to
B0 (“Alfv!en mode”) with unit total fluctuation energy and

FIG. 1. Illustration of the available
routes for global energy conversion.
The point-wise values of &ðPa #rÞ # ua

and ja # E are not sign-definite.
Therefore, there are two possible direc-
tions of energy conversion. h# # #i
denotes the space average over the
entire volume.

TABLE I. Simulation parameters: box size L, grid points N2, mass ratio

mi=me, speed of light c, proton beta bi, electron beta be, out of plane uniform
magnetic field B0, the number of particles of each species per grid ppg , and

correlation scale kc.

Code L N2 mi=me c b i be B0 ppg kc

P3D (Ref. 45) 102:4di 81922 25 30 0.1 0.1 5.0 300 16:8di
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Matches Pi-D model and predictions



Revisiting the Sod shock



Sod shock spatially integrated electrons
@thEf
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@thEmi ¼ &hE # ji; (9)

where h# # #i denotes a space average over the entire volume.
Note that the above derivation is elementary conse-
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tion concerning the heat flux ha is made for closure. In fact,
the neglect of the heat flux in our analysis may in some cir-
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example, some linear instabilities, including streaming insta-
bilities, might require including heat flux.41 In this paper, we
will not consider any effects associated with transport terms
[i.e., the divergence terms in Eqs. (4)–(6)]. Instead, we
examine local or filtered properties of the remaining terms,
e.g., ðPa #rÞ # ua, which is independent of any closure.
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case derived from the Vlasov equation, the pressure work,
&hðPa #rÞ # uai, is the only term converting fluid flow energy
into thermal (random) energy, while the term, hja # Ei, repre-
sents the conversion between fluid flow and electromagnetic
energies. The pressure work seems to be a more straightfor-
ward measure of heating rate when compared with electro-
magnetic work.27,40 At present, we cannot rule out the
possibly strong correlation between the work done by pressure
and work done by the electric field. For example, for a gener-
alized Ohm’s law or the electron momentum equation, in the
limit of massless electrons in collisionless plasma, we find
that hje # Ei ¼ &hðPe #rÞ # uei.

Notwithstanding that the pressure work is a general
property in various fluid systems, seldom have studies inves-
tigated the role of pressure in modifying the thermal (ran-
dom) energy in a turbulent kinetic plasma (however, see,
e.g., Refs. 42–44). In the realm of observations, this is more
or less due to the intractability of calculating velocity gradi-
ent from single spacecraft datasets and until recently, a lack
of high cadence determination of the pressure tensor. These
complications have led most observational studies of solar
wind turbulence to rely on high cadence magnetic field data,
which is generally much more accessible. Even in simulation
studies, accurate determination of the pressure tensor is

challenging, requiring either large numbers of particles in
PIC codes or the use of computationally demanding Eulerian
Vlasov simulations. Here, we will use numerical simulations
to explore the role of pressure tensor in heating of kinetic
plasma in detail.

III. SIMULATION DETAILS

The fully kinetic particle-in-cell (PIC) simulation
employed here spans from macroscopic fluid scales to
kinetic scales, which is suited for studies of energy transfer
and dissipation. The simulation was performed using P3D
code45 in 2.5D geometry (three components of dependent
field vectors and a two-dimensional spatial grid). The num-
ber density is normalized to the reference number density nr

(¼1 in this simulation), mass to proton mass mi (¼1 in this
simulation), charge to proton charge qi, and magnetic field to
Br (¼1 in this run). Length is normalized to the ion inertial
length di, time to the ion cyclotron time X&1

i , velocity to the
reference Alfv!en speed vAr ¼ Br=ð4pminrÞ1=2, and tempera-
ture to Tr ¼ miv2

Ar . Parameters of the PIC simulation are
listed in Table I. The speed of light in the simulation is
c¼ 30 and the ratio xpe=xce ¼ 1:2. (In the corona and solar
wind, this ratio lies in the range of 10 to> 100.) It is well
known that small mass ratio and low speed of light might
introduce some unrealistic effects. However, these are neces-
sary compromises to attain large PIC systems with reason-
ably large particle number per cell that also run for long
dynamical times. An important effect here is that the proton
and electron inertial scales lie closer together than they
would in nature. The simulation is conducted in periodic
boundary conditions in both directions and started with uni-
form density n0 ¼ 1:0 and temperature of ions and electrons
T0 ¼ 1:25. A strong out-of-plane guide magnetic field B0 ¼ 5:0
is imposed. The initial v and b fluctuations are transverse to
B0 (“Alfv!en mode”) with unit total fluctuation energy and
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Therefore, there are two possible direc-
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where h# # #i denotes a space average over the entire volume.
Note that the above derivation is elementary conse-

quence of the Vlasov equation, which encompasses only the
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will not consider any effects associated with transport terms
[i.e., the divergence terms in Eqs. (4)–(6)]. Instead, we
examine local or filtered properties of the remaining terms,
e.g., ðPa #rÞ # ua, which is independent of any closure.

Figure 1 illustrates the energy conversions as suggested
by Eqs. (7)–(9). One can see that for the collisionless
case derived from the Vlasov equation, the pressure work,
&hðPa #rÞ # uai, is the only term converting fluid flow energy
into thermal (random) energy, while the term, hja # Ei, repre-
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energies. The pressure work seems to be a more straightfor-
ward measure of heating rate when compared with electro-
magnetic work.27,40 At present, we cannot rule out the
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and work done by the electric field. For example, for a gener-
alized Ohm’s law or the electron momentum equation, in the
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Notwithstanding that the pressure work is a general
property in various fluid systems, seldom have studies inves-
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introduce some unrealistic effects. However, these are neces-
sary compromises to attain large PIC systems with reason-
ably large particle number per cell that also run for long
dynamical times. An important effect here is that the proton
and electron inertial scales lie closer together than they
would in nature. The simulation is conducted in periodic
boundary conditions in both directions and started with uni-
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Sod shock spatially integrated electrons
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ai ¼ hðPa #rÞ # uai þ hnaqaE # uai; (7)

@thEth
a i ¼ &hðPa #rÞ # uai; (8)

@thEmi ¼ &hE # ji; (9)

where h# # #i denotes a space average over the entire volume.
Note that the above derivation is elementary conse-

quence of the Vlasov equation, which encompasses only the
first three moments of distribution function. This set of trans-
port equations is not complete in the sense that no assump-
tion concerning the heat flux ha is made for closure. In fact,
the neglect of the heat flux in our analysis may in some cir-
cumstances cause the results to be far from completion. For
example, some linear instabilities, including streaming insta-
bilities, might require including heat flux.41 In this paper, we
will not consider any effects associated with transport terms
[i.e., the divergence terms in Eqs. (4)–(6)]. Instead, we
examine local or filtered properties of the remaining terms,
e.g., ðPa #rÞ # ua, which is independent of any closure.

Figure 1 illustrates the energy conversions as suggested
by Eqs. (7)–(9). One can see that for the collisionless
case derived from the Vlasov equation, the pressure work,
&hðPa #rÞ # uai, is the only term converting fluid flow energy
into thermal (random) energy, while the term, hja # Ei, repre-
sents the conversion between fluid flow and electromagnetic
energies. The pressure work seems to be a more straightfor-
ward measure of heating rate when compared with electro-
magnetic work.27,40 At present, we cannot rule out the
possibly strong correlation between the work done by pressure
and work done by the electric field. For example, for a gener-
alized Ohm’s law or the electron momentum equation, in the
limit of massless electrons in collisionless plasma, we find
that hje # Ei ¼ &hðPe #rÞ # uei.

Notwithstanding that the pressure work is a general
property in various fluid systems, seldom have studies inves-
tigated the role of pressure in modifying the thermal (ran-
dom) energy in a turbulent kinetic plasma (however, see,
e.g., Refs. 42–44). In the realm of observations, this is more
or less due to the intractability of calculating velocity gradi-
ent from single spacecraft datasets and until recently, a lack
of high cadence determination of the pressure tensor. These
complications have led most observational studies of solar
wind turbulence to rely on high cadence magnetic field data,
which is generally much more accessible. Even in simulation
studies, accurate determination of the pressure tensor is

challenging, requiring either large numbers of particles in
PIC codes or the use of computationally demanding Eulerian
Vlasov simulations. Here, we will use numerical simulations
to explore the role of pressure tensor in heating of kinetic
plasma in detail.

III. SIMULATION DETAILS

The fully kinetic particle-in-cell (PIC) simulation
employed here spans from macroscopic fluid scales to
kinetic scales, which is suited for studies of energy transfer
and dissipation. The simulation was performed using P3D
code45 in 2.5D geometry (three components of dependent
field vectors and a two-dimensional spatial grid). The num-
ber density is normalized to the reference number density nr

(¼1 in this simulation), mass to proton mass mi (¼1 in this
simulation), charge to proton charge qi, and magnetic field to
Br (¼1 in this run). Length is normalized to the ion inertial
length di, time to the ion cyclotron time X&1

i , velocity to the
reference Alfv!en speed vAr ¼ Br=ð4pminrÞ1=2, and tempera-
ture to Tr ¼ miv2

Ar . Parameters of the PIC simulation are
listed in Table I. The speed of light in the simulation is
c¼ 30 and the ratio xpe=xce ¼ 1:2. (In the corona and solar
wind, this ratio lies in the range of 10 to> 100.) It is well
known that small mass ratio and low speed of light might
introduce some unrealistic effects. However, these are neces-
sary compromises to attain large PIC systems with reason-
ably large particle number per cell that also run for long
dynamical times. An important effect here is that the proton
and electron inertial scales lie closer together than they
would in nature. The simulation is conducted in periodic
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T0 ¼ 1:25. A strong out-of-plane guide magnetic field B0 ¼ 5:0
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FIG. 1. Illustration of the available
routes for global energy conversion.
The point-wise values of &ðPa #rÞ # ua

and ja # E are not sign-definite.
Therefore, there are two possible direc-
tions of energy conversion. h# # #i
denotes the space average over the
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TABLE I. Simulation parameters: box size L, grid points N2, mass ratio
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Sod shock spatially integrated ions
@thEf

ai ¼ hðPa #rÞ # uai þ hnaqaE # uai; (7)

@thEth
a i ¼ &hðPa #rÞ # uai; (8)

@thEmi ¼ &hE # ji; (9)

where h# # #i denotes a space average over the entire volume.
Note that the above derivation is elementary conse-

quence of the Vlasov equation, which encompasses only the
first three moments of distribution function. This set of trans-
port equations is not complete in the sense that no assump-
tion concerning the heat flux ha is made for closure. In fact,
the neglect of the heat flux in our analysis may in some cir-
cumstances cause the results to be far from completion. For
example, some linear instabilities, including streaming insta-
bilities, might require including heat flux.41 In this paper, we
will not consider any effects associated with transport terms
[i.e., the divergence terms in Eqs. (4)–(6)]. Instead, we
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Figure 1 illustrates the energy conversions as suggested
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Notwithstanding that the pressure work is a general
property in various fluid systems, seldom have studies inves-
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challenging, requiring either large numbers of particles in
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Vlasov simulations. Here, we will use numerical simulations
to explore the role of pressure tensor in heating of kinetic
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Strengths and weaknesses of PiD

• Agrees with total heating when integrated over entire domain

• Much like the FPC, it can be deceptive locally

• Provides little direct insight into mechanism(s) responsible for energy exchange

• Electromagnetic energy can be transferred directly to thermal energy

• In a collisional system (even weakly collisional), additional terms contribute to 
energy exchange



Conclusions/Future Work

• The FPC provides a relatively simply diagnostic to identify the mechanism(s) responsible 
for exchanging energy between the fields and particles

• The nature of the diagnostic permits its use in single point spacecraft data analysis

• In some cases, the field-particle term is not the dominant local source of particle kinetic 
energy

• The PiD diagnostic directly correlates with the gain or loss of thermal energy in a 
collisionless system

• The PiD diagnostic also provides insight into the location but not the mechanism of 
energy exchange and it suffers similar difficulty as the FPC when used locally

• Neither diagnostic takes collisions into account to determine irreversible heating
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for exchanging energy between the fields and particles

• The nature of the diagnostic permits its use in single point spacecraft data analysis

• In some cases, the field-particle term is not the dominant local source of particle kinetic 
energy

• The PiD diagnostic directly correlates with the gain or loss of thermal energy in a 
collisionless system

• The PiD diagnostic also provides insight into the location but not the mechanism of 
energy exchange and it suffers similar difficulty as the FPC when used locally

• Neither diagnostic takes collisions into account to determine irreversible heating

• Both diagnostics show promise and provide useful but different insights


